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ABOUT THE SUM OF QUASICONVEX FUNCTIONS

FABIAN FLORES-BAZÁN† YBOON GARCÍA RAMOS‡

NICOLAS HADJISAVVAS �

Abstract. We provide conditions under which the sum of two quasi-
convex functions is also a quasiconvex function.

1. Introduction and Preliminaries

In utility theory [10] is well-known the result: “if u is a quasiconcave real
function of the form

u(x1, x2, . . . , xn) = f1(x1) + f2(x2) + · · ·+ fn(xn),

where f1, f2, . . . , fn are real continuous functions whose domains are inter-
vals on the real line, then at least n − 1 of the functions fi, i = 1, 2, . . . , n
must be concave functions”.
In optimization theory, theorems of the alternative (transposition theorems)
have proved to be an important tool to derive existence of Lagrange mul-
tipliers, duality results, scalarization of vector optimization problems, etc.
The earliest version of the alternative theorem due to Fan, Glicksberg and
Hoffman involves convex functions [6]. In order to generalize this version
without convexity the authors in [9] introduce the notion of ∗-quasiconvexity
with respect to the ordering cone Rm+ (it is called scalarly Rm+ -quasiconvexity
in [7]). Given a convex set K ⊆ Rn, a function F : K → Rm, it said to be
∗-quasiconvex if

(1.1) x ∈ K 7→ 〈p∗, F (x)〉 is quasiconvex for all p∗ ∈ Rm+ .

By virtue of the preceding result in utility theory, one could expect the
convexity of some components of f under ∗-quasiconvexity. Unfortunately,
this is not the case as the following examples show, and even if semistrict
quasiconvexity on each of the functions x 7→ 〈p∗, F (x)〉 is imposed.

Example 1.1. Let K = [−1,+∞[. We consider F : K → R2, F = (f1, f2)
with f1, f2 : K → R defined by

f1(x) =

{
x2, if − 1 ≤ x ≤ 1
1, if x > 1,

f2(x) =

{
x4, if − 1 ≤ x ≤ 1
1, if x > 1.
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Given p = (p1, p2) ∈ R2
++, we have

Fp(x)
.
= 〈p, F (x)〉 =

{
p1x

4 + p2x
2, if − 1 ≤ x ≤ 1

p1 + p2, if x > 1.

We have that Fp is quasiconvex for all (p1, p2) ∈ R2
++, but f1 and f2 are

not convex.

Example 1.2. Let K = R. We consider F : K → R2, F = (f1, f2) with
f1, f2 : K → R defined by

f1(x) =

 −x if x < −1
x2, if − 1 ≤ x ≤ 1
x, if x > 1,

f2(x) =

 −x if x < −1
x4, if − 1 ≤ x ≤ 1
x, if x > 1.

Let p = (p1, p2) ∈ R2
++, we obtain

Fp(x)
.
= 〈p, F (x)〉 =

 −(p1 + p2)x if x < −1
p1x

4 + p2x
2, if − 1 ≤ x ≤ 1

(p1 + p2)x if x > 1.

We have that Fp is quasiconvex and semistrictly quasiconvex for all (p1, p2) ∈
R2

++, but f1 and f2 are not convex.

The purpose of this note is to provide sufficient conditions guaranteeing
the quasiconvexity of two quasiconvex functions defined in reflexive Banach
spaces. This will be done in an abstract framework by means of the charac-
terization of quasiconvexity through the quasimonotonicity of an apropiate
operator associated to the given functions. We will consider the subdiffer-
ential and the normal operators.

Throughout, X denotes a real Banach space, X∗ its continuous dual and
〈·, ·〉 the pairing between X and X∗. We will denote by R++ the set of
strictly positive numbers, i.e., R++ = ]0,+∞[.

Given a (single or set-valued) operator T : X ⇒ X∗ its graph is the set

Gr(T ) =
{

(x, x∗) ∈ X ×X∗ : x∗ ∈ T (x)
}
,

and its projection onto X is called the domain of T and will be denoted by
DomT . A set-valued operator T : X ⇒ X∗ is said to be quasimonotone, if
for all x1, x2 ∈ Dom(T ) and x∗1 ∈ T (x1),

〈x∗1, x2 − x1〉 > 0 ⇒ 〈x∗2, x2 − x1〉 ≥ 0, for all x∗2 ∈ T (x2).

Given a lower semicontinuous function f : X → R ∪ {+∞} we denote by

dom f = {x ∈ X : f(x) < +∞}
its domain (which we always assume nonempty), and for any λ ∈ R

Sλ(f) = {x ∈ X : f(x) ≤ λ},
its level set of order λ, to simplify the notation we will write Sλ.

If f is differentiable we denote by

Crit(f) = {x ∈ dom f ′ : f ′(x) = 0}.
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its set of critical points.
An extended real-valued function f : X → R∪{+∞} is called quasiconvex,

if for all x, y ∈ dom (f)

(1.2) f(tx+ (1− t)y) ≤ max
{
f(x), f(y)

}
, ∀t ∈ ]0, 1[.

Equivalently, f is quasiconvex if and only if Sλ(f) is a convex set for all
λ ∈ R. Recall that given a convex set C, the normal cone to C at x ∈ C
is defined by

NC(x) =
{
x∗ : 〈x∗, d〉 ≤ 0, ∀d ∈ TC(x)

}
,

where TC(x) =
⋃
λ>0

λ(C − {x}), the Bouligand tangent cone of C at x ∈ C.

Many ways to characterize the quasiconvexity of a lower semicontinuous
functions have been done in the literature, from which in connection to the
generalized monotony we know two: via subdifferentials [1, 5, 8] and via
cones normal to the level sets [3, 2].

1.1. Subdifferential characterization. Given a lower semicontinuous func-
tion f : X → R ∪ {+∞}, for x ∈ dom f we denote by

f↑(x, u) = sup
δ>0

lim sup
y→fx
t↘0+

inf
v∈B(u,δ)

f(y + tv)− f(y)

t

its Clarke-Rockafellar generalized derivative, where t↘ 0+ indicates the fact
that t > 0 and t→ 0, and y →f x means that both y → x and f(y)→ f(x).
Then the Clarke-Rockafellar subdifferential ∂f(x) of the function f at the
point x is defined as follows (cf. [4]):

∂f(x) =

{ {
x∗ ∈ X : f↑(x, u) ≥ 〈x∗, u〉, for all u ∈ X

}
, if x ∈ dom f

∅, otherwise.

Theorem 1.3 ([1, Theorem 4.1]). Let f : X −→ R ∪ {+∞} be a lower
semicontinuous function. Then, f is quasiconvex if and only if ∂f is quasi-
monotone.

1.2. Normal characterization. Given a lower semicontinuous function f :
X → R, the set-valued operator Nf : X ⇒ X∗ defined by

Nf (x) =

{
NSf(x)

(x), if x ∈ dom f

∅, otherwise,

is the Normal Operator associated to f .

Theorem 1.4 ([2, Theorem 3,3]). Let X a reflexive Banach space, and
f : X → R a lower semicontinuous function. Then, f is quasiconvex if and
only if Nf is quasimonotone.

2. MAIN RESULT

Proposition 2.1. Let T1, T2 : X ⇒ X∗ be two quasimonotone operators. If
for any x, y ∈ Dom(T1 + T2)

R++T1(x) ⊂ R++T2(x),

then T1 + T2 is a quasimonotone operator.
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Proof. Let (x, x∗) ∈ Gr(T1 + T2) and y ∈ Dom(T1 + T2) such that

(2.3) 〈x∗, y − x〉 > 0.

Since x∗ = x∗1 + x∗2 with x∗1 ∈ T1(x) and x∗2 ∈ T2(x), we have that

〈x∗1, y − x〉 > 0 or 〈x∗2, y − x〉 > 0.

Assume that

(2.4) 〈x∗1, y − x〉 > 0.

By hypothesis there exists λ > 0 and z∗ ∈ T2(x) such that x∗1 = λz∗.
Thus, we also have

(2.5) 〈z∗, y − x〉 > 0.

Using (2.4), (2.5) and the quasimonotony of T1 and T2 respectively, we get

〈y∗1, y − x〉 ≥ 0, for all y∗1 ∈ T1(y),

and
〈y∗2, y − x〉 ≥ 0, for all y∗2 ∈ T2(y).

Summing up these two inequalities, we get

〈y∗1 + y∗2, y − x〉 ≥ 0, for all y∗i ∈ Ti(y), i = 1, 2,

or equivalently

〈y∗, y − x〉 ≥ 0, for all y∗ ∈ (T1 + T2)(y).

The case 〈x∗2, y − x〉 > 0 is similar. �

In order to treat both kinds of characterization of lower semicontinuous
quasiconvex functions, the subdifferential and the normal, we introduce the
following notation: for a lower semicontinous function f : X → R ∪ {+∞}
we denote by Tf : X ⇒ X∗ the operator which characterizes f in the sense
that

f is quasiconvex, if and only if Tf is quasimonotone.

Theorem 2.2. Let f1, f2 : X → R ∪ {+∞} be two lower semicontinuous
quasiconvex functions. Assume that

(1) for any x, y ∈ Dom(Tf1 + Tf2), R++Tf1(x) = R++Tf2(x);
(2) Tf1+f2 = Tf1 + Tf2.

Then f1 + f2 is a quasiconvex functions.

Proof. Applying Proposition 2.1 we have that Tf1 + Tf2 is a quasimonotone
operator; the result follows from the definition of Tf1+f2 . �

3. An application

Here, we exhibit an application of the notion of ∗-quasiconvexity. The re-
sult to be established is important by itself and ensures that any constrained
scalar minimization problem can be reformulated with a single constrain un-
der generalized convexity assumptions and a Slater-type condition. This re-
sult is a generalization of that obtained in [?]. Let us consider the following
constrained minimization problem

(3.6) µ
.
= inf

x∈K
f(x),
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where K
.
= {x ∈ C : g(x) ∈ −P}, C is a nonempty subset of a real locally

convex topological vector space X, f : C → R, and g : C → Y , with Y as
before and P ⊆ Y is a closed convex cone with nonempty interior. Let us
consider also the assumption
(3.7)
∀p∗ ∈ P ∗, the restriction of 〈p∗, g(·)〉 on any line segment of K is continuous.

Theorem 3.1. Let us consider problem (3.6) with f being quasiconvex.
Assume that µ is finite and g : C → Y is ∗-quasiconvex such that for
all p∗ ∈ P ∗ \ {0}, x ∈ C 7→ 〈p∗, g(x)〉 is semistrictly quasiconvex. If, in
addition, the Slater-type condition that for some x̄ ∈ C, 〈y∗, g(x̄)〉 < 0 for
all y∗ ∈ P ∗ \ {0} holds. Then, there exists p∗ ∈ P ∗ \ {0} such that

(3.8) inf
g(x)∈−P

x∈C

f(x) = inf
〈p∗,g(x)〉≤0

x∈C

f(x)

Proof. Let us consider

M
.
= g(C0) + P, C0

.
= {x ∈ C : f(x) < µ}.

Since C0 is convex and g is ∗-quasiconvex on any convex subset C ′ of C, the
set M is convex by a corollary in [?]. We can assume that M is nonempty
since otherwise any p∗ ∈ P ∗ verifies (3.8). Evidently, M ∩ (−P ) = ∅, for
if not, there exists z0 ∈ −P such that z0 ∈ M , that is, there is x0 ∈ C0

satisfying z0− g(x0) ∈ P . It turns out that g(x0) ∈ −P , x0 ∈ C, f(x0) < µ,
which cannot happen. We apply a convex separation theorem to obtain the
existence of p ∈ P ∗, p∗ 6= 0, α ∈ R, such that

〈p∗, z〉 ≥ α for all z ∈M, 〈p∗, u〉 ≤ α for all u ∈ −P.
Hence,

(3.9) p∗ ∈ P ∗ and 〈p∗, g(x)〉 ≥ 0 for all x ∈ C0.

Let x ∈ C, 〈p∗, g(x)〉 ≤ 0. In case f(x) < µ, that is, x ∈ C0, we get g(x) ∈M
and thus 〈p∗, g(x)〉 = 0. Set xt = tx̄ + (1 − t)x. Assume that f(xt) < µ
for some t ∈ ]0, 1[, then by semistrict quasiconvexity, 0 ≤ 〈p∗, g(xt)〉 < 0, a
contradiction. Whence f(xt) ≥ µ for all t ∈ ]0, 1[. By continuity, f(x) ≥ µ.
This implies

inf
〈p∗,g(x)〉≤0

x∈C

f(x) ≥ inf
g(x)∈−P

x∈C

f(x).

The reverse inequality is trivial. �
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