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Abstract

Population dynamics has been modeled with differential equations since Malthus
began their studies more than two hundred years ago. Conventional models al-
ways treat relations among species as static, denoting only their dependency for
a fixed period of time, although it is well known that relations among species
can, and in fact change over time. Here we propose a model for population
dynamics that incorporates the evolution over time of the interactions among
species. This model includes a wide range of interactions, from predator-prey
to mutualistic relations, either obligate and facultative. The mechanism we de-
scribe allows the transition from one kind of relation among species to any other,
according to some external parameters, fixed by the context. These transitions
could avoid the extinction of one of the species, if it ends up depending too
much of the environment or its relation with the other species.

1. Introduction

Ecological models that describe the interaction among species or with their
environment has being studied for a long time. The first models began by
describing the interactions of one species with their environment were those
of Fibonacci and Verhulst, also known as the exponential and logistic mod-
els. At the beginning of the twentieth century, Lotka and Volterra developed a
set of equations that model the relation within two species, a predator and a
prey. That model became a paradigm of this kind of relationship among two
competitive entities, and it has been extrapolated to many other disciplines.
Further attempts to incorporate the relations within two or more species were
developed by May and Wrigth, although not necessarily through simpler mecha-
nisms. Garćıa-Algarra et al.[1] proposed a logistic-mutualistic model that shows
a more robust dynamic and also a direct biological interpretation of the terms
involved. This model works specially by allowing a wide range of mutualistic be-
haviors. However, all models reproduce either mutualistic, antagonistic or even
comensalistic behaviors, it has never been evaluated how relationships change
through time. That is, there is no single model that explains or reflects the fact
that a mutualistic relation may become antagonistic, or the other way around.
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There is an enormous amount of cases where it is exactly the transition from
one kind of relation among species, to the opposite one, in which relays the more
interesting aspect of them. It happens either when the relation begins as mu-
tualistic and becomes antagonistic, or when the relation begins as antagonistic
and becomes mutualistic. This kind of relation transitions were mainly explored
by Lynn Margulis [2–5] among her extensive bibliographic production.

One of the most representative examples of this transition, from an antago-
nistic relation among two species to a mutualistic relation, is the origin of the
eukaryotic cell. The main idea behind this transition is that initially there were
two big groups of bacteria: eubacterias and archaea. Both groups involved a
great variety of types and sub-types of bacteria, but because of the horizontal
transmission of genes among bacteria, they are usually considered to be one
single species [4]. Unlike eubacteria, archaea maintained the energy production
through fermentation, by directly ingesting complex molecules or any other bac-
teria they could find around them. In a world where such molecules, remanents
from the violent Earth formation, were being consumed during hundreds of
millions of years, new forms of energy were becoming a pressing need. The eu-
bacterias came into play here when they developed other two additional forms
to generate energy: the photosynthesis and the breathing of oxygen. While
these new varieties were gaining ground, some mobile archaea, the spirochetes,
found a particular use when they recklessly approached to certain heterotrophic
archaea, the thermoplasmas. The proximity to them exposed the spirochetes to
be swallowed, but as they achieved to grasp to their cell walls, they were able
to use the great amount of organic residues disposed by the thermoplasmas.
The association was unexpectedly useful for the last ones, because the frenetic
movement of spirochetes gave them a movement that the slow heterotrophic ar-
chaea did not have. This symbiosis, that began as an antagonistic relationship
to become soon a mutualistic one, advanced in an unexpected direction. The
dependency among both types of bacteria became so strong that over million
years, if it was not more time, the spirochetes learned to feed exclusively from
thermoplasma waste and thus, they lost any capacity to live without them. Af-
ter even more time, the spirochetes were assimilated within the thermoplasmas
and the first eukaryotic cells were born.

Another example of this kind of relationship is when the eubacterias began to
develop new forms to generate energy. The appearance of photosynthesis came
hand in hand with the first globally ecological catastrophe: the generation of
great volumes of oxygen that invaded the atmosphere. The oxygen was the
starting point for other energy production mechanism, breathing. But breath-
ing was lethal for the anaerobic archaea that ignite with oxygen. It has been
proposed that an assimilation similar to that considered between spirochetes
and thermoplasmas allowed new nucleated cells incorporating photosynthetic
cyanobacterias and other, aerobic eubacterias, that would become plastids and
mitochondria, respectively; although the assimilation of the first ones was later
and it only occurred in those cells that previously had incorporated mitochon-
dria and, therefore, who could survive in the new atmosphere.

There are several examples of antagonistic relationships that have resulted
in mutualistic relationships. The platelminto Convoluta roscoffensis acquires
during its larva stage, a great amount of Tetraselmis algae. Those who survive
until the adult stage of the worm provide it food as a result of the photosynthesis
they carry out, directly to its digestive system [6], without the risk of being
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digested. Likewise, Kwang W. Jeon reported in 1995 [7], a research developed
during several years in the amebas Amoeba proteus, which developed a symbiotic
relationship with a kind of bacteria (called X-bacteria) after some specimens of
it resist to be digested. Strangely enough, the X-bacteria began to provide the
amebas certain kind of protein. After that, the last ones became dependent on
the first ones.

Another fascinating example is the case of the termites, usually divided in in-
ferior and superior, according to their food habits and their capacity to process
wood. Evidence [4] shows that this division happened when the inferior ter-
mites, whose digestive system is full of protists generating cellulase (the enzyme
capable to degrade cellulose), were forced to adapt themselves to high humidity
conditions. Under these conditions, the presence of fungi was very common and
one way to avoid infection and colonization by the fungi was eating them before
they reach the reproductive stage. There is some speculation that the relation-
ship between these termites and the fungi reached such level of symbiosis, that
the first ones completely lost all sign of protist life in their digestive systems.
Because of the fungi they learned to cultivate, such dependency became un-
necessary. The fungi (termitomyces) on their own became incapable to survive
without the termites, which have made very difficult their cultivation by the my-
cologists. Tellera [8] refers to a very similar case for the Attini ants, which have
a mutualistic relationship with the Agaricaceae and Pterulaceae fungi. In fact,
there has been some debate about if these species evolve first their mutualistic
relationship from an accidental commensalism or an incidental antagonism.

It is from these cases, which have happened and continue happening rel-
atively frequent among different species, that we considered the possibility of
extending an ecological model to consider the case in which the relationships
among species change over time. In the following section we introduce the
model that we have developed and then, in the following section, we present
the simulations performed demonstrating the validity of our model, within the
assumptions and restrictions that we consider. Finally, we present the conclu-
sions and a brief indication about what will be necessary to make for extending
and completing the current model.

2. Methodology

What we are going to develop here is a first approach to a model of popu-
lation dynamics of two species, where it is possible that both of them modify
their relationship over time. In other words, the species will be able to alter-
nate between mutualism, antagonism and commensalism according of how the
parameters are chosen.

To begin with, we will start with the mutualistic logistic model developed
by Garcia-Algarra [1] whose system of differential equations is given, in the case
of having two populations, by:

Ẋ[t] = X[t]{r1 + b12Y [t]− (α1 + c1b12Y [t])X[t]}
Ẏ [t] = Y [t]{r2 + b21X[t]− (α2 + c2b21X[t])Y [t]}

(1)

Where population of species 1 is represented by the X[t] function and the
population of species 2 by the Y [t] function. To prove that from this model
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we can obtain the three types of relationships among species, we use to the
following table:

Table 1: Possible interactions within the logistic mutualistic model according to the signs of
its parameters. It is ultimately the interaction between one species to their environment or
to the other species which determines the type of relationships among them.

Parameter Valor Relationship
ri + Species i gets its resources

from their environment
ri − Species i can not depend only

of its environment
bij + Species i benefits from

species j
bij − Species i is harmed from the

presence of species j

From the possibilities described in the table, it is clear that when two species
have mutual benefit, we have a mutualistic regime. In that case, both bij , bji >
0. When a species benefits from the other, but the last one harms from the
first one, we have an antagonistic regime. For example, if bij > 0, bji < 0,
we are in an interaction of type “species i predates/parasitizes species j”. The
commensalistic regime happens provided that one of the species benefits from
the other, but being the last one unaffected by this benefit. That corresponds
to the case bij > 0, bji = 0 which, because it is a trivial case (dynamically
speaking) in which one of the interactions is cancelled, we will not consider.

Since it is possible to generate mutualistic and antagonistic regimes from
changing the signs in the parameters of (1) what we present is a model that
allows performing those changes, but independently to population dynamics.
This responds to the goal of determining a parallel and controlled evolution
of these parameters, out of the equations that describe the populations. If
this function is demonstrable, that is, if we achieve the parameters to change
from outside, according to what is needed, it only remains to justify how these
changes happen. With that, our system will be a valid model for describing the
transitions among the regimes that describe interactions among species.

2.1. The model

The simplest model that reflects what we have proposed to extend the mu-
tualistic logistic model is as follows. We define:

r1[t] = rx[t]− r̃1

r2[t] = ry[t]− r̃2

b12[t] = bx[t]− b̃12

b21[t] = by[t]− b̃21

(2)

In this way, we are including a minimum change in the original model, but
that allow us making the changes of sign discussed. This model has been adapted
from a system proposed by Strogatz in [9] although for a different aim, but
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reproducing the same dynamics. Then, our model remains reformulated as
follows:

Ẋ[t] = X[t]{(rx[t]− r̃1) + (bx[t]− b̃12)Y [t]

−(α1 + c1(bx[t]− b̃12)Y [t])X[t]}
Ẏ [t] = Y [t]{(ry[t]− r̃2) + (by[t]− b̃21)X[t]

−(α2 + c2(by[t]− b̃21)X[t])Y [t]}

(3)

And the new parameters that we have included will according to the following
relationships:

ṙx[t] = rx[t](ax − dxrx[t]− exbx[t])

ḃx[t] = bx[t](fx − gxbx[t]− hxrx[t])
(4)

ṙy[t] = ry[t](ay − dyry[t]− eyby[t])

ḃy[t] = by[t](fy − gyby[t]− hyry[t])
(5)

r̃1, r̃2, b̃12, b̃21 > 0

ax, dx, ex, fx, gx, hx > 0

ay, dy, ey, fy, gy, hy > 0

(6)

Once the model is established, the following we show the linear stability
analysis (LSA). Thus, we will be able to predict how they work and what dy-
namics appear among the populations. We have three simultaneous systems in
their evolution, but independent from each other. Consequently, our LSA will
be formed by three parts, the one that corresponds to the evolution of popula-
tions 1 and 2, given from (3), the one that corresponds to the evolution of rx[t]
and bx[t] parameters, corresponding to species 1 and is given by the (4), and
finally the one that corresponds to the evolution of ry[t] and by[t] parameters
belonging to species 2 and is given by the(5). As the evolutions of parameters
(equations (4) and (5)) are solved independently of each other, we will be able
to make a LSA for each pair of them. The system of differential equations of
populations (3) will depend on the parameters, but it can be noted that their
behavior will not be different from what we know about this system, provided
that we consider what is developed from table 1.

The idea of proposing this model is that it allows the parameters to be able
to adopt positive or negative values, from the temporary evolution of thetime
dependent terms. Here, we can have a great amount of combinations for param-
eters. As will be seen further on the LSA, this system has three types of fixed
points: the cancellation of both parameters, the cancellation of one of them
and the presence of the other, and the coexistence of both. These combinations
will be valid for parameters of species 1 and 2. For simplicity and without any
alteration in the results, we will determine that species 2 always has its param-
eters in partial cancellation status: if r2 > 0, b21 < 0 and if r2 < 0, b21 > 0.
Under this assumption, we will consider now the case where rx[t], bx[t] are also
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cancelled in a limited way, which will give us the possibilities described in table
2. In case the parameters are not cancelled, they will converge to a stable fixed
value that will be indicated as rx0, ry0, bx0, by0 and will be positive in all the
cases.

Table 2: Possible interactions according to the dependent values that parameters can adopt.
These parameters determine the evolution of both species if we suppose that they are mutually
exclusive. Here we consider that rx0, ry0, bx0, by0 > r̃1, r̃2, b̃12, b̃21. rx0, ry0, bx0, b0y represent
the fixed stable values to which the parameters converge in case they do not cancelle each
other. It is importante to note that the whole first column represent only one condition.

Condition r1 r2 b12 b21 Relationship among species 1 and 2
rx0 > r̃1 + + − − Competition for resources
ry0 > r̃2 + − − + Prey/Predator

bx0 > b̃12 − + + − Predator/Prey

by0 > b̃21 − − + + Obligate mutualism

It is interesting to note that this combination of parameters is the one that
offers the greatest variety of relationships among species. The terminology
for relationships has been chosen according to what is offered by the litera-
ture: an unidirectional dependency between one species and the other reflects a
predation-prey model, while the mutual dependency just refers to the mandatory
mutualism. Finally, a sufficient dependency on the environment, but under an
antagonistic relationship, refers to the competition among species for the same
resources.

Other sets of parameters can exist if we permute any of the relationships
between rx0, ry0, bx0, by0 and r̃1, r̃2, b̃12, b̃21. These changes can be seen in table
3 and they alter the relationship of one species to the other, but in a way
they do not offer a new interesting behavior. The two results: the unequal
competition and the extinctuos parasitoidism end inevitably in the extinction
of some species. For example, if r1 is always negative, this will indicate that
species 1 is not capable to survive only from environment resources, in such
a way that either it will need the mutualism with species 2 or it will have to
predate it. Otherwise, it will be condemned to disappear. On the other hand,
if it always keeps a relationship with species 2 that harms it, it may only be
subjected to the competition or predation interaction: both requiring r1 > 0.
Otherwise, it will also disappear.

It is interesting to note which the limitations that exist in the evolution
of relationships among two species from these boxes are . This is significant,
because if a species always have its r0 means that it is incapable to handle it
by itself with the resources of the environment and it is forced to establish a
relationship with other species, being or not beneficial for the other.

The extreme cases where r1 and r2 are negative, only offers a new scenario
where all the parameters are negative and species extinguish very quickly. The
same applies if b12 and b21 are always negative. Any behavior different from
those already reviewed only causes the inevitable death of some species. These
cases will not be relevant for us so we will not consider them later.

In case the parameters of a species coexist, this will only introduce the
possibility that one of the species does not depend on the other, allowing two
new behaviors to appear, the optional mutualism and predation. This is shown
in table 4.
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Table 3: Possible interactions according to the dependent values that parameters can adopt.
These parameters determine the evolution of both species if we suppose that they are mutually
exclusive. Here we consider that rx0 < r̃1 and bx0 < b̃12. In both cases we consider that
ry0, by0 > r̃2, b̃21. rx0, ry0, bx0, b0y represent the fixed stable values to which the parameters
converge in case they do not cancelle each other. It is importante to note that the whole first
column represent only one condition.

Condition r1 r2 b12 b21 Relationship among species 1 and 2
rx0 < r̃1 − + − − Unbalanced competition
rx0 > r̃2 − − − + Extinctuos parasitoidism

bx0 > b̃12 − + + − Predator/Prey

by0 > b̃21 − − + + Obligate mutualism
Condition r1 r2 b12 b21 Relationship among species 1 and 2
rx0 > r̃1 + + − − Competition
ry0 > r̃2 + − − + Prey/Predator

bx0 < b̃12 − + − − Unbalanced competition

by0 > b̃21 − − − + Extinctuos parasitoidism

Table 4: Possible interactions according to the dependent values that parameters can adopt.
These parameters determine the evolution of both species if we suppose that parameters
within the same species can coexist, but parameters for the other goes on partial cancellation.
rx0, ry0, bx0, b0y represent the fixed stable values to which the parameters converge in case
they do not cancelle each other. It is importante to note that the whole first column represent
only one condition.

Condition r1 r2 b12 b21 Relationship among species 1 and 2
rx0 > r̃1 + + + − Optative predation/Prey
ry0 > r̃2 + − + + Optative/obligate mutualism

bx0 > b̃12 − + − − Unbalanced competition

by0 > b̃21 − − − + Extinctuos parasitoidism
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In this last case, what we have is that it is indifferent for the species whose
parameters coexist what will happen with the other. Either the second one
takes advantage of the relationship or it harms from it.

As both systems of parameters are structurally symmetrical, the LSA for
the equations (4) and (5) will be equivalent. In that sense, the solution of one
of them will allow us to understan what would happen with the other and,
therefore, we will only focus on the development of one of them and we will see
what happens in all the regimes for their fixed points, the total cancellation,
the partial cancellations or the coexistence.

2.2. LSA for parameters rx[t] and bx[t]

For convenience, we will omit the subscript x in the coefficients, to not
overextend the notation. Then, the system of equations would be as follows:

ṙ[t] = r[t](a− dr[t]− eb[t])
ḃ[t] = b[t](f − gb[t]− hr[t])

(7)

The system of differential equations given by (7) has, namely, four fixed
points {r0, b0}, which can be easily obtained when ṙ[t] = 0, ḃ[t] = 0 is cleared:

Complete cancellation
{r0, b0} = {0, 0} (8)

Partial cancellations

{r0, b0} =

{
0,
f

g

}
,

{
a

d
, 0

}
(9)

Coexistence

{r0, b0} =

{
df − ha
dg − eh

,
ag − ef
dg − eh

}
(10)

As we are considering that each term is relevant in the dynamics that is being
explored, none of the parameters a, d, e, f, g, h will be 0 and all will be positive.
Furthermore, we will discuss the case where dg = eh later. The Jacobean matrix
of this system is given by∂ṙ∂r ∂ṙ

∂b
∂ḃ

∂r

∂ḃ

∂b

 =

[
a− 2dr0 − eb0 −er0

−hb0 f − 2gr0 − hr0

]
(11)

So, the evaluation of the fixed points is simply replacing them and calculates
the matrix eigenvalues. For the total cancellation we have that a stable fixed
point corresponds to: [

a 0
0 f

]
→ λ1 = a
λ2 = f

(12)

For the partial cancellations we have that it corresponds to points depending
on certain conditions. In a case it is:

8



a−
ef

g
0

−
hf

g
−f

→ λ1 = a−
ef

g
λ2 = −f

(13)

which corresponds to a fixed point:



stable if a <
ef

g

degenerate if a =
ef

g

saddle point if a >
ef

g

(14)

And, on the other hand, we have:−a −
ea

d

0 f −
ha

d

→ λ1 = −a

λ2 = f −
ha

d

(15)

which corresponds to a fixed point:


stable if f <

ha

d

degenerate if f =
ha

d

saddle point if f >
ha

d

(16)

Here the fixed point is called degenerate when it is between the limit of a
stable point and a saddle point. Degeneration is only a reference to the fact
that stability is reached along a whole straight line in the phase space around
which the other paths of stability are extended. For coexistence, as it is the
most tedious case, we will make the development in some detail and appealing
to the corresponding justified assumptions.

Case 1: f = a, h = e, g = d−
ad

e+ d
−

ae

e+ d

−
ae

e+ d
−

ad

e+ d

→ λ1 = −a

λ2 =
a(e− d)

e+ d

(17)

Here again we see that we have a dilemma. If e > d we have simply obtained
a saddle point. If e < d, we rather have a stable point. And if e = d, we have
again the same type of degenerated stability now.

Case 2: f = a, h = e, g = d+ ε, considering ε� d, e−
a(e− d)(d− ε)
e2 − d2 − dε

−
ae(e− d)

e2 − d2 − dε
−
ae(e− d− ε)
e2 − d2 − dε

−
a(e− deε)(d+ 2ε)

e2 − d2 − dε

 (18)

In this case, the analysis needs to be more analyzed thoroughly due to the
amount of terms involved. Thus, if we subtract the trace T and the determinant
D, we would have:
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T = (
a

e2 − d2 − dε
)(2d2 − 2d(e− ε)− eε)

D = −(
a

e2 − d2 − dε
)2(e− d)(e3 + d3

−d2(d− 2ε)− e2ε− d(e2 + eε))

(19)

Here, we will be interested in conditions that make T = 0, D = 0 and
T 2 = 4D, since the eigenvalues can be written like:

λ1,2 =
T ±
√
T 2 − 4D

2
(20)

Let’s see what alternative we do have for these cases.
1. D = 0

This happens as long as d = e, or either d + ε =
√
e(e− ε). And this gives

λ1 = 0 and λ2 = T , from which the determination of it is a degenerate fixed
pointor a stable one depends upon whether T > 0 or T < 0.

Now, T = 0 as long as 2d+ ε = 2e and in this case, both eigenvalues are 0.

On the other hand, we have that e <
2d(d+ ε)

2d+ ε
, so then T > 0 and the fixed

point would be degenerate and unstable. But, if e >
2d(d+ ε)

2d+ ε
, then T < 0 and

we have instead a degenerate but stable fixed point.

2. D > 0

Which happens as long as d > e, or either d+ ε >
√
e(e− ε). For this case,

the evaluation if T 2 < 4D would allow us to determine if the eigenvalues are
imaginary, but provided that this condition can never hold under our assump-
tions, this possibility is overruled. On the other hand, T 2 = 4D only if we have
that 2d+ ε = 2e, but if 2d+ ε < 2e we always have that T 2 > 4D.

This allow us to focus again on the conditions that give T = 0, because
T >

√
T 2 − 4D, as long as D > 0. And we already see that T = 0 as long as

2d + ε = 2e and, in that case, λ1 = λ2 = 0 again. On the other hand, we have

that e <
2d(d+ ε)

2d+ ε
, T > 0 and λ1 > λ2 > 0 which means that the fixed point

would be unstable. Finally, if e >
2d(d+ ε)

2d+ ε
, then T < 0 and this would make

λ1 < λ2 < 0, which means that the fixed point would be stable instead.

3. D < 0

This can only happens when d+ ε <
√
e(e− ε). For this case, the condition

that T 2 − 4D > 0 holds always, which means that the roots are real, but also
that T <

√
T 2 − 4D. Here we don’t need to analyze anything else, because the

relation between the eigenvalues with the trace and the determinant ensures
that one eigenvalue is going to be positive, while the other remains negative.
This garantees that our fixed point is goint to be a saddle point.
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According to all of this, we can see that there are two cases: either the par-
tial cancellations are stable fixed points and the coexistence is a saddle point, or
the partial cancellations are saddle points and the coexistence is a stable fixed
point. In both cases, the total cancellation is an unstable fixed point.

Case 1: stable partial cancellations and coexistence as saddle point

You can see in this case that the general trend of the system will be to run
towards some cancellation, leaving the other parameter to exist. Here we can
then have two cases:
r → 0, b→ b0, donde b0 > b̃12, de modo que b12 > 0 y r1 < 0
r → r0, b→ 0, donde r0 > r̃1, de modo que r1 > 0 y b12 < 0

Figure 1: Diagram that shows the dynamics that can be obtained when the partial cancel-
lations are stable fixed points and the coexistence is a saddle point. In the left figure we
present the diagram with the four fixed points, while at the right figure we do a zoom to
the region that the unstable and saddle points are. Here we use the following conditions
a = 1, f = 1, e = 1, h = 1, d = 0.1, g = 0.1

This case is graphically explored in Figure 2, which shows the flow diagram
of dynamics and the four fixed points. The idea in this graph is to be able to
appreciate the transition through them.

Case 2: stable coexistence and partial cancellations as saddle points

Here, the trend of the system will be always to run towards the coexistence
that will be located, according to the equation (10) in:

{r0, b0} =

{
df − ha
dg − eh

,
ag − ef
dg − eh

}

Thus, we have then obtained the possibilities established in the first part of
the text, in which either the parameters coexist, or they are cancelled each other.
It is interesting to note here that although the coexistence of the parameters
allows relationships among species that we can catalogue as optional to appear,
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Figure 2: Diagram that shows the dynamics that can be obtained when the partial cancella-
tions are saddle points and the coexistence is a stable fixed point. Here we use the following
conditions a = 1, f = 1, e = 0.1, h = 0.1, d = 1, g = 1

in mutualism and in predation, these will be originated from establishing the
parameters of one of the species in a stable point. This behavior is not important
to us here because it is equivalent to set the parameters of the equation of species
to fixed values; what we would be obtaining will be exactly the stability of the
parameters around those values. In that sense, what is interesting will be to
explore the partial cancellation of parameters, because that allows us to modify
the relationship of one species with the other and it offers us, in turn, the most
interesting development of behaviors.

As we have seen, we can have the partial cancellations for species 1 or when

rx →
a

d
, or when bx →

f

g
, being equivalent for species 2, with their own ry and

by parameters. In both cases, we will have to consider that a <
ef

g
and f <

ha

d
,

will be conditions for these points be stable.
It should be mention that we left pending discussing the condition dg = eh.

This case has a particular interest to the extent that it would tend our fixed
point towards infinity in the coexistence regime. This happens because such
difference is in the denominator of equation (10) and this result can be extended
if the form of the equation (7) is explored. That dg = eh means that the
compensatory terms for both parameters are equivalent to each other: d and
g multiply the part of r [t] and b [t] that subtracts itself, while e subtracts
b[t] to r[t] and h does the opposite thing. This type of condition is beyond
our interest because it places the developments as the dominant part of the
evolution of parameters and what we rather need here is that there must be
a tangible influence among these, instead of cancelling such influence. On the
other hand, the mathematical indeterminacy that indicates the case dg = eh
is pertinent only when the coexistence of parameters occurs, and we have just
demonstrated that regime will not be useful in our model.
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2.3. The simulation

2.3.1. Dynamical system of populations X[t] and Y [t]

Numerical Poisson simulations have been performed to obtain the antagonism-
mutualism and mutualism-antagonism transitions. The Poisson simulations are
especially useful when dealing with population models since in each time step
the algorithm varies discreetly the number of individuals and stochastic fluctu-
ations are naturally introduced [10].

When the average frequency of occurrence λ of an event is well-known, the
Poisson distribution gives the probability that a certain number of events hap-
pens during a fixed period of time 3. For example, figure 5 shows the distribution
of the number of hurricanes per year in the USA superimposed to a Poisson dis-
tribution in which the average frequency of occurrence is 5.25 hurricanes per
year.

Figure 3: Probability distribution of the number of hurricanes per year within the US [? ].

When this type of simulation is implemented in a population model, the
average frequency of occurrence is the net flow of individuals at any moment.
If the model describes the change in population X, like a differential equation
of the type dX

dt = f(X), this variation can be simulated through a Poisson
distribution with the following equation in differences:

x(t+ ∆t) = x(t) + Po[λ = ∆t · f(x)] (21)

In addition, this method allows arbitrarily to vary the temporary step (and
therefore the timescales) in a simple way through parameter t. In our case, the
formulation of the model for the simulation is expressed as follows:

X[t+∆t]=X+sign{[(rx−r̃1)+10−3(bx−b̃12)Y ]X−[α1+c110−3(bx−b̃12)Y ]X2}·
Po{∆t·abs{[(rx−r̃1)+10−3(bx− ˜b12)Y ]X−[α1+c110−3(bx− ˜b12)Y ]X2}}

Y [t+∆t]=Y+sign{[(ry−r̃2)+10−3(by−b̃21)X]Y−[α2+c210−3(bx−b̃21)X]Y 2}·
Po{∆t·abs{[(ry−r̃2)+10−3(by−b̃21)X]Y−[α2+c210−3(bx−b̃21)X]Y 2}}
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Where functions ”sign” and ”abs” are used to resolve the fact that the
Poisson distribution only admits positive average frequencies of occurrence. X
and Y shall be understood here as X[t] and Y [t], notation that has been avoided
due to clarity. The 10−3 are included to scale the parameters bi, since the
values of ri and those of bi come from the evolution of the dynamical system of
parameters (i = x, y).

2.3.2. Dynamical system of ri[t] and bi[t] parameters

The simulation of dynamical system of parameters has become something
more complicated, since there shall be the impossibility, in this case, of turn-
ing to a Poisson simulation: the parameters are continuous values and their
variation must be continuous.

In order to solve these problems, the Poisson simulation has been chosen to
be adapted to a continuous system turning to the Gaussian distribution, taking
the average and the traditional deviation equal to the instantaneous variation.
Thus, the formulation of the variation of the parameters will be as follows:

r[t+ ∆t] =r + Gauss{µ = ∆t · r(a− dr − eb), σ = abs[∆t · r(a− dr − eb)]}
b[t+ ∆t] =b+ Gauss{µ = ∆t · b(f − gb− hr), σ = abs[∆t · b(f − gb− hr)]}

Where µ and σ are, respectively, the mean and the standard deviation. In
the same way that in the equations of the evolution of populations, r must be
read as r[t] and b as b[t].

3. Results

Two transitions have been simulated: those from antagonism to mutualism
and from mutualism to antagonism. The same set of parameters has been used
for both (tables 5 and 6), varying only the initial conditions for the dynami-
cal system of parameters. The transitions have been simulated introducing an
abrupt external change in the value of parameters b and r of one of the popu-
lations, in such a way that the system of the parameters of that population is
stabilized in a new fixed point.

Table 5: Parameters set for the dynamical system of parameters

a d e f g h
X 1 1/2 1 1 1/9 1
Y 1 1/2 1 1 1/10 1

Table 6: Parameters set for the dynamical system of populations

I.C. r̃ b̃ α c
X 400 1 4 0,0001 0,001
Y 400 1 5 0,0001 0,001
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For the antagonism-mutualism transition, we have begun with the following
initial conditions for the system of parameters:

{rxo, bxo} = {2, 1}
{ryo, byo} = {1, 9}

In such a way the parameters change in the fixed point:

{rx, bx} ={2, 0}
{ry, by} ={0, 10}

Resulting the parameters effective:

{(rx − r̃1), 10−3(bx − b̃12)} = {1,−4 · 10−3}
{(ry − r̃2), 10−3(by − b̃21)} = {−1, 5 · 10−3}

At iteration t = 30000, bx is suddenly changed to 3, pushing the system X
to the attraction basin of the other stable fixed point:

{rx, bx} = {0, 9}

And causing the effective parameters of population X to become:

{(rx − r̃1), 10−3(bx − ˜b12)} = {−1, 5 · 10−3}

Figure 4 shows the evolution of two dynamical systems of parameters in their
phase spaces.

Figure 4: Transition from antagonism to mutualism: evolution of the populations across the
phase spaces. The green dot corresponds to the initial conditions; the yellow pentagon is
the point in which the external alteration is done and the red dot is the final point of the
evolution.

The variation in the parameters of the dynamical system of the populations
causes a change in its phase space, which goes from an antagonistic phase space
to a mutualistic one; each one with its own fixed points. Figure 5 shows how a
transition among fixed points happens when the phase space changes.

It is important to emphasize that the antagonistic fixed point needs to be
in the basin of survival of the mutualistic system [1], otherwise the change in
parameters leads to the extinction of both species.
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Figure 5: Transition from antagonism to mutualism: evolution of the populations across the
phase spaces, both mutualist (left) and antagonist (right). The green dot corresponds to the
initial conditions; the yellow pentagon is the point in which the external alteration is done
and the red dot is the final point of the evolution.

The temporary evolution of populations and of effective value of parameters
is shown in figure 6, where you can see how the evolution of the system of
parameters stabilizes much more quickly than the one of populations. It can be
interesting to play with this speed of change and to study how it conditions the
evolution of populations.

Figure 6: Transition form antagonism to mutualism: temporal evolution of the populations
and the efective parameters.

For mutualism-antagonism transition, the initial conditions of the dynamical
system of parameters are the following:

{rxo, bxo} = {1, 4}
{ryo, byo} = {1, 9}

Which move them to the next fixed point:

{rx, bx} ={0, 9}
{ry, by} ={0, 10}
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So, the effective values of parameters are:

{(rx − r̃1), 10−3(bx − b̃12)} = {−1, 5 · 10−3}
{(ry − r̃2), 10−3(by − b̃21)} = {−1, 5 · 10−3}

In this case, the external alteration (also in iteration t = 30000) of param-
eters is made in r and in b, because it is very difficult to reach the attraction
basin of the other fixed point in another way. The values given are bx = 1,
rx = 3, with which the system X becomes stabilized in the new fixed point:

{rx, bx} = {2, 0}

And the effective values of the corresponding parameters become:

{(rx − r̃1), 10−3(bx − b̃12)} = {1,−4 · 10−3}

Figure 7 shows the evolution of parameters during the mutualism-antagonism
transition.

Figure 7: Transition from mutualism to antagonism: evolution of the populations across the
phase spaces. The green dot corresponds to the initial conditions; the yellow pentagon is
the point in which the external alteration is done and the red dot is the final point of the
evolution.

Here you can see how the external intervention in parameters is significantly
stronger than in antagonism-mutualism transition. This is necessary because
the fixed point in which the system initially stabilized is much further away
from the attraction basin than from its counterpart. From these results it could
be inferred that, in nature, the type of existing relationships now among the
different species is the one that live in a more stable attractor against external
influences. In this case, the external influence causes the dynamical system of
populations change from mutualistic to antagonistic one.

The populations will evolve first in a mutualistic phase space to become an
antagonistic one after alteration of parameters (see figure 8).

The temporary evolution of populations and parameters are shown in figure
11.

3.1. Discussion and interpretation of results

In order to support that it is valid to introduce those disturbances, it will
be necessary to remember that parameters are moving in equations which are
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Figure 8: Transition from mutualism to antagonism: evolution of the populations across the
phase spaces, both mutualist (left) and antagonist (right). The green dot corresponds to the
initial conditions; the yellow pentagon is the point in which the external alteration is done
and the red dot is the final point of the evolution.

Figure 9: Transition form mutualism to antagonism: temporal evolution of the populations
and the efective parameters.
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parallel to the evolution of populations. Our proposal has been to make them
independent because we consider that these parameters refer to the relation-
ships of the species to their environment and among themselves, independently
of the populations. These relationships can be then subject to changes that,
either arise from external elements, or simply they are governed by a different
temporary scale. If certain environmental conditions that before were beneficial
ri > 0 change (oxygen appears in the atmosphere, or a source of food begins to
disappear), the relationships a species with its environment, reflected through
the parameter ri must also change, because it becomes negative. The survival
of this species will be then conditioned to that its single other possible source
of resources, that in our bipartite model is the other species. Then, the former
species is forced to establish a beneficial relationship with the latter and, in
account of that, bij changes from negative to positive. The reverse transition is
identically interpretable. This interpretation already allows illustrating one of
the phenomena explained in the introduction: the appearance of mitochondria
and plastids in the eukaryotic cells.

However, this model has a more deep interpretation yet. The need of depen-
dance on another source of resources, in the absence of the previous one is quite
understandable. But the possibility of quit out from a source of resources, or
totally replace it from depending on a new relationship is less obvious. Another
possible interpretation that allows the transition from antagonism to mutualism
is the appearance of the endosymbiosis and the consequent symbiogenesis. One
can think that the change of predominance between ri and bij is totally timeless,
that is, they happen simultaneously. That allows us to interpret the causes of
change in the reverse way to the one explained in the previous paragraph: it
must be ri the one that change from positive to negative because of the fact
that bij changes from negative to positive. This type of transitions has also
happened in the history of the first cells: it is the mechanism presented in the
introduction that, in principle, explains the formation of eukaryotic cells. As
explained above, the formation of the nucleus seems to be consequence of the
association of certain species of spirochetes with archaea, photoautotrophic and
heterotrophic ones. The association, probably accidental, would have originated
since the slow archaea would dispose enough organic material to keep the spiro-
chetes nearby. This proximity could caused later that the last ones began to
join and to move the archaea, which would have been beneficial for both species:
the archaea would have access to more opportunities of resources, either other
predation bacteria or complex molecules (and that will be the mutualistic bene-
fit these would obtain) and, in turn, a greater feeding of archaea would provide
more waste to the spirochetes. Over time, its specialization would have excluded
the dependency of the resources on the environment and the spirochetes would
finish inevitably tied to the archaea.

That the evolution of parameters does not depend on populations is an as-
sumption that we have established as a premise. This does not mean that an ad
hoc model for some specific evolutionary process that requires and/or justifies
taking that idea within the model, cannot be constructed. The equations of pa-
rameters are simple enough as to admit the presence of a population-dependant
term. The analysis for that, however, although could start from what is pre-
sented here, would have to be elaborated again almost from the beginning.
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4. Conclusions

In this paper, we develop a generalized model of the evolution of popula-
tions where the type of interaction among them can be changed within it. We
introduce a mechanism by which transitions among the different types of inter-
action may be made, which on the other hand, has slightly limited the variety
of possible biological interactions. Although the most relevant ones (preda-
tion/parasitism and mutualism) have been kept, adding also the competition
for resources. This mechanism consists of a dynamical system independent from
the populations, but which make vary the parameters of them. When a transi-
tion is caused, an external intervention in the dynamical system of parameters
is performed causing a change of fixed point.

We also present a detailed linear stability analysis and a set of initial parame-
ters and conditions that allows simulating antagonism-mutualism and mutualism-
antagonism transitions avoiding the extinction of the involved species. We per-
form some numerical Poisson simulations in which the capacity of the model to
reproduce these transitions can be demonstrated.

It will be extremely interesting to introduce a source of noise in the dynam-
ical system of parameters so that the leaps among the two basins of attraction
can be naturally given by stochastic variations, making the model develops in an
autonomous way between the mutualistic and the antagonistic phase. A possible
approach to attack this line of work will be to play with the value of the tra-
ditional deviation in the random number generator with Gaussian distribution
that is used to make the parameters evolve.

The next step in the study of this proposed model could be to analyze bipar-
tite networks of more than two species. Since the model allows for this, these
networks would include relations of multiple types, being able to simulate a rea-
sonably ecosystem close to reality. In addition, transitions among relationships
could be introduced, although this company leads to the difficulty of finding a
set of parameters in which, during the antagonistic phases, the populations do
not fall within the basin of extinction. And maybe it will be also possible to find
a way to identify what type of antagonistic relationships has the potentiality to
revert its relationship and become a mutualistic one and which from the last
ones, if they completely separate from the rest of the ecosystem, will have the
possibility of merging and generating new species.
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