Equilibrium Problems and Riesz Representation _____ Theorem

Documento de Discusión CIUP

DD1612

Diciembre, 2016

John Cotrina Profesor e investigador del CIUP cotrina_je@up.edu.pe

Javier Zúñiga Profesor e investigador del CIUP zuniga_jj@up.edu.pe

Las opiniones expresadas en este documento son de exclusiva responsabilidad del autor y no expresan necesariamente aquellas del Centro de Investigación de la Universidad del Pacífico o de Universidad misma.

Equilibrium Problems and Riesz Representation Theorem

John Cotrina * Javier Zúñiga*

December 12, 2016

Abstract

The purpose of this paper is to give an alternative proof of the Riesz representation theorem using the well-known theorem of Ky Fan minimax inequality applied to equilibrium problems.

Key words: Equilibrium problem, Convexity, Monotonicity, Coercivity.

1 Introduction

Let *H* be a Hilbert space, and let *H'* denote its dual space, consisting of all continuous linear functionals from *H* into the field \mathbb{R} . It is very well known that for each $x \in H$, the function $x^* : H \to \mathbb{R}$ defined by

$$x^*(y) = \langle x, y \rangle$$
, for all $y \in H$

where $\langle \cdot, \cdot \rangle$ denote the inner product of *H*, is an element to *H'*. The Riesz Representation Theorem states that every element of *H'* can be written uniquely in this form (see for instance [2]).

On the other hand, Blum and Oettli introduced the *equilibrium problems* in 1993 (see [1]), as a generalization of various problems such as minimization problems, Nash equilibrium, variational inequalities, etc (see for instance [1, 3]).

Formally, an equilibrium problem, associated to $K \subset H$ and $f : K \times K \to \mathbb{R}$, consists on finding $x \in K$ such that

$$f(x,y) \ge 0$$
, for all $y \in K$.

The solution set of an equilibrium problem is denoted by EP(f, K).

^{*}Universidad del Pacífico. Av. Salaverry 2020, Jesús María, Lima, Perú. Email: { cotrina_je, zuniga_jj}@up.edu.pe

2 Preliminaries

Let *H* be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\|\cdot\|$. Let *K* be a convex subset of *H*. Recall that a function $h: K \to \mathbb{R}$ is said to be:

- *convex* when for all $u, v \in K$ and all $t \in [0, 1]$ the following holds

$$h(tu + (1 - t)v) \le th(u) + (1 - t)h(v)$$

- quasiconvex when for all $u, v \in K$ and all $t \in [0, 1]$ the following holds

$$h(tu + (1-t)v) \leq \max\{h(u), h(v)\}$$

- *lower semicontinuous* when for each $x_0 \in K$ and each $\lambda < f(x_0)$ there exists $\delta > 0$ such that for all $x \in K$ the following implication holds

$$\|x - x_0\| < \delta \implies f(x) > \lambda.$$

Finally, a function f is called *concave*, *quasiconcave* or *upper semicontinuous* if -f is convex, quasiconvex or lower semicontinuous, respectively.

Clearly, all convex functions are quasiconvex. Additionally, a function is continuous if, and only if, it is lower and upper semicontinuous.

A function $f: K \times K \to \mathbb{R}$, defined on $K \subset H$, is called:

- monotone when $f(u, v) + f(v, u) \leq 0$, for all $u, v \in K$;
- *coercive* when for all sequence $(u_m) \subset K$ with $||u_m|| \to +\infty$ there exists $u \in K$ such that $f(u_n, u) \leq 0$, for all n large enough.

Usually, the function *f* is called *bifunction*.

The following result is due to Ky Fan who proved the famous *minimax inequality*.

Theorem 2.1 ([4], Theorem 1). Let V be a real Hausdorff topological vector space and K a nonempty compact convex subset of V. If a bifunction $f : K \times K \to \mathbb{R}$ satisfies:

- $f(\cdot, y) : K \to \mathbb{R}$ is upper semicontinuous for each $y \in K$,
- $f(x, \cdot) : K \to \mathbb{R}$ is quasiconvex for each $x \in K$,

then there exists a point $x \in K$ such that

$$\inf_{y \in K} f(x, y) \ge \inf_{w \in K} f(w, w).$$

The above theorem plays an important rol in equilibrium problems, because Ky Fan's Theorem implies existence of solutions for these problems.

3 An altertive proof of Riesz Representation Theorem

For each $\phi \in H'$, we define the bifunction $f : H \times H \to \mathbb{R}$ as

$$f(u,v) = \phi(u-v) - \langle u, u-v \rangle \text{ for all } u, v \in H$$
(R)

We note that *f* satisfies the following property:

- (i) f(u, u) = 0, for all $u \in H$.
- (*ii*) Since ϕ and $\langle \cdot, \cdot \rangle$ are both continuous, we have that f is continuous.
- (*iii*) For all $u, v \in H$,

$$f(u,v) + f(v,u) = \phi(u-v) - \langle u, u-v \rangle + \phi(v-u) - \langle v, v-u \rangle = -\|u-v\|^2 \le 0$$

thus, f is monotone.

(iv) Let $u \in H$ we note that

$$f(u, \cdot) = \phi(u - \cdot) - \langle u, u - \cdot \rangle.$$

therefore, the function $f(u, \cdot)$ is affine.

(v) For each $v \in H$,

$$f(\cdot, v) = \phi(\cdot - v) - \|\cdot\|^2 + \langle \cdot, v \rangle$$

The linearity of ϕ and $\langle \cdot, v \rangle$, and concavity of $-\|\cdot\|^2$ imply that $f(\cdot, v)$ is concave.

Theorem 3.1 (Riesz Representation Theorem). For each $\phi \in H'$, there exists an unique $u_0 \in H$ such that

$$\phi(u) = \langle u_0, u \rangle$$
 for all $u \in H$.

Moreover, $||u_0|| = ||\phi||_{H'}$.

In order to proof the above proposition we need the following lemmas.

Lemma 3.2. Let f defined as (R). If $u_1, u_2 \in EP(f, H)$ then $u_1 = u_2$.

Proof. The monotonicity of f implies $f(u_1, u_2) = f(u_2, u_1) = 0$. So,

$$0 = f(u_1, u_2) + f(u_2, u_1) = ||u_1 - u_2||^2$$

Therefore $u_1 = u_2$.

Proof of Theorem 3.1. The uniqueness follows from Lemma 3.2.

For the existence, we consider $K = \overline{B}(0, \|\phi\|_{H'})$ which is weakly compact and convex. Since the bifunction (R) satisfies the conditions of Theorem 2.1 on K, there exists $u_0 \in K$ such that

$$\inf_{v \in K} f(u_0, v) \ge \inf_{w \in K} f(w, w) = 0$$

i.e. $f(u_0, v) \ge 0$ for all $v \in K$ and in particular $f(u_0, 0) = \phi(u_0) - ||u_0||^2 \ge 0$. We want to show that $f(u_0, \cdot)$ is linear. Since $f(u, \cdot)$ is affine it is enough to show that $f(u_0, 0) = \phi(u) - ||u||^2 = 0$. Suppose that $||u_0||^2 < \phi(u_0)$, then

$$0 \leq \|u_0\|^2 < \phi(u_0) = |\phi(u_0)| \leq \|\phi\|_{H'} \|u_0\| \quad \to \quad \|u_0\| < \|\phi\|_{H'}$$

and so there exists t > 1 such that $tu_0 \in K$. Thus,

$$f(u_0, tu_0) = (1 - t)\phi(u_0) - (1 - t)||u_0||^2 = (1 - t)[\phi(u_0) - ||u_0||^2] \ge 0$$

and this implies $\phi(u_0) - ||u_0||^2 \leq 0$ which is a contradiction. Therefore, we have $\phi(u_0) = ||u_0||^2$ and $f(u_0, \cdot)$ is linear.

So, for each $v \notin K$ there exists $t \in]0,1[$ such that $tv \in K$. The linearity of $f(u_0, \cdot)$ implies $f(u_0, v) = t^{-1} \times f(u_0, tv) \ge 0$. Thus, $u_0 \in EP(f, H)$. Also by linearity of $f(u_0, \cdot)$ we have $f(u_0, -v) \ge 0$ which is true if and only if $f(u_0, v) \le 0$ and therefore

$$f(u_0, v) = \phi(u_0 - v) - \langle u_0, u_0 - v \rangle = 0$$
, for all $v \in H$

which is equivalent to $\phi(w) = \langle u_0, w \rangle$, for all $w \in H$.

Finally, we note that

$$\|\phi\|_{H'} = \sup_{u \in H, \ \|u\| \le 1} \phi(u) = \sup_{u \in H, \ \|u\| \le 1} \langle u_0, u \rangle \le \|u_0\| \le \|\phi\|_{H'}$$

therefore $\|\phi\|_{H'} = \|u_0\|$.

-	_

References

- [1] E. Blum, W. Oettli, *From optimization and variational inequalities to equilibrium problems*. Math. Stud. 63, 1-23 (1993).
- [2] H. Brezis, Analyse Fonctionalle: Théorie et Applications, Masson, Paris, 1993.
- [3] A. Iusem and W. Sosa, *New existence results for equilibrium problems*, Nonlinear Anal. 52 (2003), 621-635.
- [4] K. Fan, *A minimax inequality and applications*, in O. Shisha (Ed.), inequality III, Academic Press, New York, 1972, pp. 103-113.