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Abstract 
 
Developmental gaps between children of different socioeconomic backgrounds emerge early and 

persist over time. Cognitive skill formation is a cumulative process and, thus, all relevant influences 

that took place until the time skill is measured can play role in shaping these gaps. Linear 

decompositions based on the Oaxaca-Blinder technique are a fairly common way of estimating the 

contribution of two or more categories of variables to these differences in cognitive achievement. Two 

prominent examples of these categories are family and school influences. In this regard, the literature 

exhibits no consensus in terms of decomposition strategy and interpretation of its components, as well 

as a tendency to separate home and school influences by assigning all observed household, family and 

child characteristics to the first category. I argue this can lead to misleading policy implications and to 

biases in the estimated contributions of the categories. This analysis seeks to contribute to the 

literature in two ways. First, it formally explores the potential for biases in the decomposition 

exercises attempted so far. Second, it offers an alternative decomposition strategy consistent with 

explicit behavioural assumptions regarding the determination of skill inputs. This prevents arbitrary 

choices in terms of decomposition technique, its components and interpretation, and also makes the 

analysis less prone to biases. I illustrate empirically the main points of the analysis employing a rich 

dataset that contains longitudinal information on cognitive test scores, family and school 

characteristics, to decompose the cognitive skill gap observed, at age 8, between urban and rural 

children in Peru. 
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1. Introduction and motivation 
 

Developmental gaps between children from disadvantaged backgrounds and those belonging 

to more affluent families emerge early and persist over time (Heckman, 2006, 2007; Paxson 

and Schady, 2007; Schady et al., 2014; Walker et al., 2007). Evidence suggests that such 

differences are difficult to overcome later in life, and limit these children’s future economic 

opportunities and wellbeing (Almond and Currie, 2011; Cunha et al., 2006). 

 

Cognitive skill formation is a cumulative process and, thus, all relevant influences that took 

place until the time skill is measured can, in principle, play role in shaping these gaps. An 

obvious question that follows is which particular influence or group of influences plays a 

significant role for the emergence of these differences. Do earlier influences matter more than 

those occurring later in the life of these children? Do influences originated in a particular 

environment (such as these children’s home or school) play a major part?  

 

The literature has tried to address this type of questions in several ways. One way has been to 

estimate the individual effects of particular influences, reporting their size and significance.  

The main empirical challenge related to this kind of exercise is related to the presence of 

unobserved influences. Omitted influences are likely to generate biased estimates of 

individual effects because skill inputs are choice variable and are related through the decision 

making process of families. This strand of the literature has explicitly exposed this problem 

by laying down models that postulate a production function of skill and characterize how 

families’ choices determine its inputs (Cunha and Heckman, 2007; Glewwe and Miguel, 

2008; Todd and Wolpin, 2003).  

 

Identification of individual effects in this “skill formation literature” has usually relied on 

some form of instrumental variable strategy. This is feasible because of the limited number of 

parameters of interest. Findings using the US National Longitudinal Survey of the Young 

(NLSY/79), confirm that skill formation is a cumulative process, that socio-emotional skills 

affect cognitive skill, and that cognitive skill is particularly sensitive to parental investments 

during early childhood (Cunha and Heckman, 2008; Cunha et al., 2010; Todd and Wolpin, 

2007). Efforts to replicate this in the developing world have confirmed the importance of 

parental investments and the fact that cognitive and socio-emotional skills are related 

(Helmers and Patnam, 2011; Lopez-Boo, 2009). 

   

This strand of the literature has also made important contributions by making explicit the 

assumptions required by different empirical specifications to identify production function 

parameters (Todd and Wolpin, 2003, 2007) and by clarifying the difference between the 

partial and the total effect of an input on skill (Glewwe and Miguel, 2008; Todd and Wolpin, 

2003)1.  

 

Another strand of the literature has attempted a more direct answer to the question of which 

influence or group of influences is more important for the emergence of a particular gap, by 

proposing a linear decomposition of this gap. In particular, the difference in mean outcomes 

                                                           
1 The partial or marginal effect of an input corresponds to its production function parameter. It implies one is 

holding all other direct influences constant. The total effect of an input corresponds to its partial effect plus 

those that occur through the changes in other inputs caused by the shift in the input of interest. Under the logic a 

model describing families’ choices, the total effect corresponds to the parameter in a conditional demand 

function (see Glewwe and Miguel (2008)). It is worth noticing that experimental and quasi-experimental 

methods usually recover the total effect of an input. 
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between two groups of children is decomposed into contributions that are due to the 

differences in the mean values of two or more categories or groups of variables. These 

categories are usually built so as to compare the relative importance of influences originated 

at home vs. those originated at school (Hernandez-Zavala et al., 2006; McEwan, 2004; 

McEwan and Trowbridge, 2007; Ramos et al., 2012). 

 

Most of the studies in this strand of the literature have relied on some form of Oaxaca-Blinder 

decomposition technique (Blinder, 1973; Oaxaca, 1973). There are several ways to 

implement this technique and this implies one needs to choose which specific strategy to 

follow and how to interpret its components. In addition, one has to devise a rule to classify 

variables and contributions into different categories. In this regard, a revision of the studies 

applied to the developing world reveals two problematic features: (i) that the choice of 

decomposition strategy and interpretation of its components has been made arbitrarily (i.e. 

with no indication of the assumptions in terms of skill formation process and family 

behaviour that led to these choices); and (ii) that the rule commonly employed to separate 

home and school influences has been to assign all observed household, family and child 

characteristics to the first category. 

 

The source of these two problematic features is the lack of a decomposition strategy based on 

the predictions of a framework describing the production of skill and the process determining 

its inputs (this is, the lack of a decomposition strategy that takes into account the insights and 

lessons of the “skill formation literature”). The problem with these two features is that they 

entail the risk of producing misleading policy implications and of introducing biases in the 

estimated contributions of the categories of interest. This potential source of bias has been 

overlooked so far in the literature and emerges because several of the home and family 

characteristics considered within the “home influences” category can control for omitted 

inputs that belong to the group of “school influences”.  

 

A good example of the above is family income or wealth. Under the logic of a model 

describing the production of skill and families’ choices, family income has no direct effect on 

skill but acts as an input determinant. In fact, family income can not only determine the 

quantity and quality of inputs received at home but also the quantity and quality of inputs 

received at school. If the latter is true, it would not be appropriate to attribute the contribution 

of this variable exclusively to the “family influences” category. 

 

Based on the above, this analysis seeks to contribute to the literature by formally exploring 

the two problematic features of the decomposition exercises attempted so far, and by offering 

an alternative decomposition strategy consistent with explicit behavioural assumptions 

regarding the determination of skill inputs. The latter prevents arbitrary choices in terms of 

decomposition technique, its components and interpretation, and also makes the analysis less 

susceptible to biases.  

 

For this, the rest of the paper is organized as follows. Section 2 reviews the methods and 

recent results associated to the decomposition exercises attempted so far for the developing 

world.  Section 3, presents a framework describing the skill formation process and how 

families’ choices determine its inputs, allowing for endogenous school quality. In section 4, I 

use the insights of this model to formally explore the potential biases that can be introduced 

by the decomposition strategies employed in the literature. I also use these insights to propose 

an alternative decomposition strategy less prone to these biases and to discuss its rationale 

under the lens of the Oaxaca-Blinder technique. In section 5, I use a rich dataset comprising 
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cognitive test scores, family background and school information for 8-year-old Peruvian 

children to decompose the urban-rural gap and empirically illustrate the main points made in 

section 4. Section 6 concludes with some final remarks. 

 

 

2. Decomposing achievement gaps in developing countries: arbitrary 

choices and potential biases 
 

Table 1 summarizes a comprehensive list of studies that have attempted a linear 

decomposition of the differences in average cognitive achievement between two groups of 

children in the developing world. Differences in average cognitive outcomes are expressed as 

a linear combination of differences in the averages of predictors, and the contributions of 

different subsets of predictors are estimated. These predictors or influences are typically 

grouped into categories that comprise family and school characteristics (see column (D)). 

 

In terms of results (see column (F)), one first element worth noticing is that evidence 

regarding the contribution of school characteristics to the difference in cognitive outcomes 

between children of different backgrounds is mixed. In McEwan and Trowbridge (2007) and 

McEwan (2004), for example, the authors analysed learning outcome gaps between 

indigenous and non-indigenous children in Guatemala, Bolivia and Chile. They concluded 

that differences in the quality of schools have a significant contribution to these gaps, 

explaining between 50 and 70%. In Ramos et al. (2012), the authors analysed the difference 

in PISA results between urban and rural students in Colombia. They also found that 

differences in the school environment play a significant role with a contribution that ranges 

between 75 and 83% of the observed gap. 

 

Results presented in Hernandez-Zavala et al. (2006) tell quite a different story. These authors 

addressed learning outcome gaps between indigenous and non-indigenous children in 

Guatemala, Mexico and Peru. They concluded that differences in “family variables” 

contribute more than differences in “school variables” to the overall explained gap. 

Surprisingly, they found that the contribution of school characteristics in Guatemala ranges 

between 17 and 23%, which is in sharp contrast with the results discussed in McEwan and 

Trowbridge (2007) were the contribution of schools to the same gap was found to be as high 

as 70%. 

 

In a similar fashion, and although they do not consider an explicit category containing school 

variables, in Arteaga and Glewwe (2014), the authors highlight the role played by household 

and child characteristics above that of community characteristics2. They analysed cognitive 

test score gaps between indigenous and non-indigenous children in Peru and found that, by 

age 8 (when children are in 2nd grade), differences in household and child characteristics 

account for 80% of the gap.  

 

How can we explain this variability in terms of results? Further analysis of the studies 

reviewed in Table 1 reveals two additional characteristics that can help explain the lack of 

consensus regarding the importance of differences in school characteristics vis-à-vis the 

importance of differences in family variables for cognitive achievement gaps. First, the 

choice of decomposition strategy and the interpretation of its components (summarized in 

                                                           
2 The authors, however, present their community level fixed effects as partially capturing differences in school 

and teacher characteristics.   
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column (C)) can be characterized as arbitrary. In other words, there is no explicit reference to 

the assumptions that have led to choosing a particular empirical strategy to decompose the 

observed gap and to interpret the components into which it has been decomposed. Second, in 

all the studies providing an estimate of the contribution of different subsets of observed 

influences (e.g. family and school characteristics), control variables have been assigned to 

particular subsets or categories (as reported in columns (D) and (E)) without consideration of 

the role they play in the production of skill. The potentially harmful consequences of these 

two features of the literature are: (i) the risk of introducing biases in the estimate of the 

contribution of particular categories of variables; and (ii) the risk of overlooking the role of 

relevant influences when carving out policy implications.  In what follows, I further develop 

these ideas. 

 

2.1. Choosing a decomposition strategy and interpreting its components 

 

All the studies summarized in Table 1 have used some variant of the Oaxaca-Blinder, 

henceforth OB, decomposition strategy. In general, this strategy is based on decomposing the 

difference in mean outcomes between two groups into a portion due to differences in the 

mean values of observable predictors, and a portion due to differences in the coefficients 

governing the relationship between the outcome and these predictors. The latter is usually 

known as the “unexplained” part of the gap.  

 

There are different ways to implement the OB decomposition. Depending on the number of 

components involved in the decomposition, these are usually classified as “twofold” or 

“threefold” (Jann, 2008). Let us start by exploring the “threefold” decompositions. For this, 

consider two groups of individuals (A and B) for whom a certain outcome (𝑦𝑖) can be related 

to a set of predictors (𝑥𝑖)  in the following way:  

 

𝑦𝑖𝐴 = 𝑥𝑖𝐴
′ 𝛽𝐴 + 휀𝑖𝐴 

𝑦𝑖𝐵 = 𝑥𝑖𝐵
′ 𝛽𝐵 + 휀𝑖𝐵 

(1) 

 

If we estimate a linear regression for each group including an intercept in both 𝑥𝑖𝐴 and 𝑥𝑖𝐵, 

then the following will hold: �̅�𝐴 = �̅�𝐴
′ �̂�𝐴 and �̅�𝐵 = �̅�𝐵

′ �̂�𝐵.  

 

One way to measure how much of the difference in mean outcomes has to do with differences 

in predictors and how much with differences in coefficients is by using the following 

decomposition (Jones and Kelly, 1984; Winsborough and Dickenson, 1971): 

 

�̅�𝐴 − �̅�𝐵 = (�̅�𝐴 − �̅�𝐵)′ �̂�𝐵 + �̅�𝐵
′ (�̂�𝐴 − �̂�𝐵) + (�̅�𝐴 − �̅�𝐵)′(�̂�𝐴 − �̂�𝐵)   (2) 

 

This is a “threefold” decomposition built taking group B as the reference group. The first 

component captures the contribution of the difference in predictors or endowments (the 

portion of the gap that would be closed if group B had the same endowments as group A). 

The second component captures the contribution of the difference in coefficients (the portion 

of the gap that would be closed if group B had the same coefficients as group A). The third 

component is an interaction term that accounts for the fact that differences in endowments 

and coefficients occur simultaneously. It is the portion of the gap that only arises if 

endowments and returns change together (Biewen, 2012). 

  

If the decomposition is built taking group A as the reference group it would yield: 
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�̅�𝐴 − �̅�𝐵 = (�̅�𝐴 − �̅�𝐵)′ �̂�𝐴 + �̅�𝐴
′ (�̂�𝐴 − �̂�𝐵) − (�̅�𝐴 − �̅�𝐵)′(�̂�𝐴 − �̂�𝐵)   (3) 

 

and the interpretation would be similar to that provided in the previous paragraph but with 

changes occurring in the endowments and coefficients of group A. 

 

Let us now briefly focus on the “twofold” decompositions. These are better appreciated if we 

introduce a third vector of reference coefficients (�̂�𝑅) to be used to measure the contribution 

of the differences in endowments and coefficients to the overall gap. The difference in mean 

outcomes between groups A and B can be expressed as follows:  

 

�̅�𝐴 − �̅�𝐵 = (�̅�𝐴 − �̅�𝐵)′ �̂�𝑅 + �̅�𝐴
′ (�̂�𝐴 − �̂�𝑅) + �̅�𝐵

′ (�̂�𝑅 − �̂�𝐵)    (4) 

 

The four types of “twofold” decompositions usually encountered in the literature emerge 

depending on the choice of �̂�𝑅 (see Table 2).  

 

Table 2: Four different two-fold Oaxaca-Blinder decompositions 

 

 Reference coefficients Decomposition 

1 
Group A coefficients (�̂�𝑅 =

�̂�𝐴) 

�̅�𝐴 − �̅�𝐵 = (�̅�𝐴 − �̅�𝐵)′ �̂�𝐴 + �̅�𝐵
′ (�̂�𝐴 − �̂�𝐵) 

2 
Group B coefficients (�̂�𝑅 =

�̂�𝐵) 

�̅�𝐴 − �̅�𝐵 = (�̅�𝐴 − �̅�𝐵)′ �̂�𝐵 + �̅�𝐴
′ (�̂�𝐴 − �̂�𝐵) 

3 

Coefficients from a pooled 

regression over both groups 

(�̂�𝑅 = �̂�𝑃𝑜𝑜𝑙𝑒𝑑)  

�̅�𝐴 − �̅�𝐵 = (�̅�𝐴 − �̅�𝐵)′ �̂�
𝑃𝑜𝑜𝑙𝑒𝑑

+ �̅�𝐴
′ (�̂�𝐴 − �̂�

𝑃𝑜𝑜𝑙𝑒𝑑
)

+ �̅�𝐵
′ (�̂�

𝑃𝑜𝑜𝑙𝑒𝑑
− �̂�𝐵) 

4 

Coefficients from a pooled 

regression over both groups 

including a group indicator 

(�̂�𝑅 = �̂�𝑃𝑜𝑜𝑙𝑒𝑑∗) 

�̅�𝐴 − �̅�𝐵 = (�̅�𝐴 − �̅�𝐵)′ �̂�
𝑃𝑜𝑜𝑙𝑒𝑑∗

+ �̅�𝐴
′ (�̂�𝐴 − �̂�

𝑃𝑜𝑜𝑙𝑒𝑑∗
)

+ �̅�𝐵
′ (�̂�

𝑃𝑜𝑜𝑙𝑒𝑑∗
− �̂�𝐵) 

 

 

In all four cases, the first term in the right hand side of the decomposition equations captures 

the portion of the gap that can be explained by the differences in endowments. The remaining 

term(s) capture the portion of the gap due to differences in coefficients or the “unexplained” 

part of the gap. 

 

The first two “twofold” decompositions correspond to the original formulations proposed in 

Oaxaca (1973) and Blinder (1973). The third decomposition was discussed in Neumark 

(1988). He explored the consequences of group membership on wages and proposed using 

the coefficients of a pooled regression including all observations as a reference as this relaxes 

the “pure discrimination” or “pure nepotism” assumptions that are behind choosing group A 

or group B as a reference. Finally, the fourth “twofold” decomposition is also based on a 

vector of reference coefficients obtained from a pooled regression over the entire sample but 

that includes a group indicator. It is worth noticing that this is equivalent to estimating the 

“unexplained” part of the gap by using the coefficient of the group indicator in the pooled 

regression. To see this, consider this pooled* regression to be as follows: 

 

𝑦𝑖 = 𝑥𝑖
′𝛽𝑃𝑜𝑜𝑙𝑒𝑑∗ + 𝛿𝐷𝑖 + 휀𝑖    (5) 
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where 𝐷𝑖 is the group indicator (a dummy variable that adopts the value of 1 if the individual 

belongs to group A and the value of 0 if he belongs to group B). The inclusion of this group 

indicator ensures that the regression line passes through the means of both groups. Therefore: 

�̅�𝐴 = �̅�𝐴
′ �̂�𝑃𝑜𝑜𝑙𝑒𝑑∗+ 𝛿 and �̅�𝐵 = �̅�𝐵

′ �̂�𝑃𝑜𝑜𝑙𝑒𝑑∗. This, in turn, implies that: 

 

�̅�𝐴 − �̅�𝐵 = (�̅�𝐴 − �̅�𝐵)′ �̂�
𝑃𝑜𝑜𝑙𝑒𝑑∗

+ �̂�       

= (�̅�𝐴 − �̅�𝐵)′ �̂�
𝑃𝑜𝑜𝑙𝑒𝑑∗

+ �̅�𝐴
′ (�̂�

𝐴
− �̂�

𝑃𝑜𝑜𝑙𝑒𝑑∗
) + �̅�𝐵

′ (�̂�
𝑃𝑜𝑜𝑙𝑒𝑑∗

− �̂�
𝐵

)    (6) 

 

which means that  �̅�𝐴
′ (�̂�𝐴 − �̂�

𝑃𝑜𝑜𝑙𝑒𝑑∗
) + �̅�𝐵

′ (�̂�
𝑃𝑜𝑜𝑙𝑒𝑑∗

− �̂�𝐵) = �̂�. 

 

There is no consensus regarding which is the best OB decomposition. In Biewen (2012), for 

example, the author advocates for the “threefold” strategy arguing that the interaction term is 

a constituent part of the difference in means and “it is hard to find reasons to allocate [it] 

either in whole or in part to either the “characteristics” or the “returns” effect” (Biewen, 

2012; p. 12). Its interpretation, however, can be quite problematic, especially if it accounts 

for a substantial portion the overall gap. 

 

Within the family of “twofold” decompositions, in Elder et al. (2010) and Jann (2008) the 

authors advocate for the OB pooled* decomposition. In both studies the authors argue that 

the alternative OB pooled option tends to overstate the contribution of the “explained” 

component. In  Elder et al. (2010) the authors further show that the “unexplained” part 

estimated using the OB pooled* decomposition is typically close to the estimates provided by 

the more standard OB options (setting the reference coefficients to those of group A or B). 

They propose the OB pooled* strategy as an attractive method for obtaining a single measure 

of the “explained” and “unexplained” portions of a gap. 

 

This lack of consensus is manifest in the literature surveyed in Table 1. Out of the 9 studies 

surveyed, two use the “threefold” decomposition (5 and 9), two use a “twofold” 

decomposition taking the disadvantaged group as a reference (3 and 8); one use a “twofold” 

decomposition taking the advantaged group as a reference (4); three use a “twofold” 

decomposition using the coefficients of a pooled regression as a reference (1,2,7), two of 

which are pooled* (1 and 2); and one study uses both a “twofold” decomposition taking the 

advantaged group as a reference and one taking the coefficients of a pooled* regression as a 

reference (6). 

 

There are also different interpretations given to the size and significance of the “unexplained” 

part of the gap. For example, some studies explicitly acknowledge that the “unexplained” part 

of the gap can be capturing the contribution of omitted influences (Hernandez-Zavala et al., 

2006; McEwan, 2004; McEwan and Trowbridge, 2007). Other studies, however, implicitly 

assume that the skill formation process has been fully specified, and interpret the difference 

in coefficients capturing the “unexplained” part of the gap as literally revealing a difference 

in the effectiveness with which inputs are transformed into skill by the two groups of children 

under analysis  (Barrera-Osorio et al., 2011; Beltran and Seinfeld, 2012; Burger, 2011; Zhang 

and Lee, 2011).  

 

A common feature of all the studies presented in Table 1 is that the choice of decomposition 

strategy is not based on a framework that describes the production of skill and the process 

determining its direct influences or inputs. This leads to arbitrary choices in terms of number 

of components and reference groups used to build these components, as well as to arbitrary 
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interpretations of the results regarding their contribution to the gap under analysis. This 

explains the lack of consensus regarding which decomposition strategy to use and can lead to 

misleading policy implications. 

 

Take, for example, those studies that interpret the “unexplained” part of the gap as revealing 

a difference in the effectiveness with which inputs are transformed into skill. Without an 

explicit reference to a production function of skill, this interpretation can fuel the notion that 

the learning process is an attribute of the school and not the child3 which, in case the 

“unexplained” part dominates, leads to policy recommendations that advocate for a more 

efficient use of school resources instead of an increase in the provision of school inputs 

(Beltran and Seinfeld, 2012; Burger, 2011). This type of recommendation can be misleading 

if the difference in coefficients is in fact a symptom of omitted inputs that are unevenly 

distributed between the two groups. In this regard, the risk of omitted inputs is particularly 

significant in the studies surveyed in Table 1, as they all rely on cross sectional data. This 

means that can only account for contemporaneous influences whereas the skill formation 

process is cumulative, meaning that outcomes observed in a particular moment of time are a 

function of all influences that have occurred until that time. 

 

2.2. Building up categories and assigning contributions 

 

In seven out of the nine studies summarized in Table 1, the authors go beyond the “difference 

in endowments-difference in coefficients” dichotomy and further decompose the former into 

different subsets or categories of variables. These categories typically comprise family and 

school characteristics. The objective, thus, is to measure the contribution of influences related 

to these two environments to the gap under analysis. The discussion that follows is centred 

around empirical exercises that focus on these two categories. The main messages, however, 

can be generalized to situations that involve more than two categories. 

 

Estimating the contribution of family and school influences to the gap under analysis requires 

an estimate of the effects of these influences on skill and a rule to assign these influences into 

the categories proposed. Both elements entail the risk of introducing a bias in the estimate of 

the contributions of family and school influences. The first source of bias has been widely 

addressed in the “skill formation literature” and is related to the presence of omitted variable 

biases in our estimates of the parameters of the production function of skill. Because we 

seldom observe all the relevant direct influences of skill and these are related through the 

decision making process of families, it is highly likely that omitted influences will produce 

biased estimates of the direct effects of those influences we observe. Different empirical 

specifications of the production function of skill require different assumptions to be able to 

recover these parameters. These assumptions have been discussed at length in (Todd and 

Wolpin, 2003, 2007)4. 

 

                                                           
3 Conceptualizing the skill formation technology as an attribute of the school implies that the learning process 

would cease in absence of the school, just as production would stop in absence of the firm. This implication is 

especially problematic when modelling broad forms of skill, whose acquisition is a process that started before 

and continues beyond the schooling period. 
4 It is worth noticing that consistent estimation of the contribution of a subset of variables does not require 

consistent estimation of the effects of all observed influences. As discussed in Castro and Rolleston (2015), 

omission of a relevant input of skill can still allow one to recover a consistent estimate of the contribution of a 

category of variables as long as the effect of the omitted input is picked up by observed influences that belong to 

its same category.  
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The second source of bias has not been addressed yet in the literature and is related to the use 

of rules (explicit or implicit) that end up assigning the contribution of variables that belong to 

one category into another. The problem arises when assigning the contribution of variables 

that control (directly or indirectly) for omitted influences that belong to more than one 

category. If this is the case, the contribution of these controls should not be assigned 

exclusively to either the family or school environment. If omitted influences have a positive 

effect on skill and the gap in their endowment is also positive, doing so will lead to 

overstating the contribution of the category hosting these controls. 

 

Studies surveyed in Table 1 exhibit the abovementioned problem in two different ways. The 

first has to do with the assignment of predetermined household, family and child 

characteristics to the “family influences” category. The second is related to the use of school 

fixed effects or school-level averages of child characteristics and their assignment to the 

“school influences” category.  

 

The inclusion of predetermined child, household and family characteristics that do not have a 

direct effect on skill (such as family income, household size or the child’s birth order) in the 

estimation of a production function is justified insofar they are relevant arguments in the 

demand functions of omitted direct influences. Given constraints and preferences, parents 

play a major role deciding the inputs that determine the skill formation process of their 

children. Because of this, arguments in the demand function of inputs are related to child, 

family and household characteristics. Inclusion of these predetermined controls implies we 

are replacing the omitted influences by their corresponding demand functions. This 

configures what is known as a “hybrid” specification (Rosenzweig and Schultz, 1983; Todd 

and Wolpin, 2007).  

 

As shown in Table 1, a rule commonly employed in the literature when assigning variables 

into categories has been to group all family, household and child characteristics into the 

“family influences” category. A quick revision of the variables typically considered within 

this category reveals that these include direct influences (such as books or time that parents 

spend with children) but also variables that reflect family resources and preferences which 

are, therefore, controlling for omitted influences.  

 

Family resources and preferences determine the inputs provided in the home environment 

(such as early stimulation opportunities or learning material) but can also play a role 

determining the quantity and quality of inputs provided at school through parents’ school 

choices. More affluent families can provide better stimulation opportunities to their children 

during early childhood and can also afford enrolling them in better schools. Because of this, 

the rule employed in the literature entails the risk of overstating the relative importance 

influences provided in the family environment. This risk grows larger as families’ school 

choices have a greater influence on the quality of school inputs and as less information on 

school inputs is available for the analysis.  

 

This type of bias is likely affecting the results discussed in Hernandez-Zavala et al. (2006), 

where the authors found that family variables contribute more than schools relying on a rather 

limited set of school and teacher characteristics. It is worth noting that, in this study, school 

data was especially limited for Mexico and the contribution of school influences was found to 

be cero (see Table 1, row 4, column E). 
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Not all the studies that have grouped family and household characteristics into a single 

category have found that schools have a limited contribution. In fact, three studies that found 

that differences in school characteristics play a major role also followed this rule (McEwan, 

2004; McEwan and Trowbridge, 2007; Ramos et al., 2012) (see rows 1, 2 and 3 in Table 1). 

A common feature of these studies that can explain these results is that they have captured 

school influences by introducing school fixed effects or the mean socioeconomic level of the 

peer group. 

 

In principle, one could argue that the contribution of school fixed effects or school-level 

averages of child characteristics belong to the “school characteristics” category. School fixed 

effects absorb all direct influences that are invariant within schools and school inputs are 

surely among these. However, influences originated at school might not be the only inputs 

shared by students that belong to the same school. The stronger the correlation between 

children’s socioeconomic status and the quality of schooling received, the closer the match 

between children’s early childhood ability and school choice. Under this setting, poor 

information on early childhood inputs or past skill measures (as in the three studies 

mentioned above) will lead to school fixed effects or school-level averages of child 

characteristics absorbing omitted non-school influences, and to an overestimation of the 

contribution of the school environment5.  

 

Finally, it is worth considering the strategy and results discussed in Arteaga and Glewwe 

(2014). These authors conclude that differences in household and child characteristics play a 

major role when explaining the learning outcome gap between 8-year-old indigenous and 

non-indigenous children in Peru. They also group all family and household characteristics 

into a single category, including variables that can be considered direct influences of skill and 

also others that belong to the demand function of omitted inputs. Different from Hernandez-

Zavala et al. (2006), however, these authors do not build another category of “school 

characteristics” but instead measure the contribution of community-level influences captured 

through community fixed effects.  

 

Community-level characteristics can exert a direct influence on the skill formation process 

(through interactions between the child and community members and peers) although 

probably its major influence (especially among young children) occurs by affecting the 

quantity and quality of inputs that the child receives both at home and at school. It is 

reasonable to postulate, therefore, that both the “household characteristics” and “community 

characteristics” categories analysed in Arteaga and Glewwe (2014) comprise elements that 

control for omitted inputs that belong to both the home and school environments.  

 

In this case, the possibility of bias in their estimated contributions is less clear, as we can no 

longer say that part of the contribution of one of the categories has been assigned to the other, 

as in the cases discussed above. The fact that the two categories comprise elements that 

control for omitted inputs, however, introduces another type of complication that turns the 

analysis less informative for policy. In particular, it entails the risk of obscuring the role of 

potentially relevant inputs which, in this case, are likely related to the school environment. In 

other words, school inputs which are potentially relevant in explaining the gap under analysis 

                                                           
5 Interestingly, in Ramos et al. (2012) the authors included the mean socioeconomic level of the peer group 

among the “school characteristics” category but concluded interpreting its contribution as a family influence. 

This is reasonable insofar these school averages capture children’s early childhood ability, but entails the same 

risk of understating the importance of schools as assigning all observed family and household characteristics 

into a single category. 
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and that can be directly affected by policy action end up subsumed under the “household 

characteristics” and “community characteristics” categories. As a consequence, policy 

recommendations end-up focusing on family characteristics less amenable to policy action 

such as parental education. 

 

In a similar fashion as the arbitrary choices of decomposition strategy and interpretation of its 

components, the problems discussed in this section can also be traced back to the lack of an 

explicit framework describing the skill formation process and families’ choices determining 

its inputs. In particular, lack of this framework leads one to overlook the difference between 

skill inputs and skill input determinants (those variables that belong to the demand function 

of inputs). This, in turn, increases the risk of using rules that end-up assigning the 

contribution of one category into another, and of proposing variable categories that obscure 

the role of potentially relevant inputs.  

 

 

3. The production function of skill and families’ choices regarding its 

inputs 
 

In this section I describe the skill formation technology and present a simple model 

describing how families’ choices determine its inputs. The objective is to formalise the 

difference between the inputs of skill and the variables that determine these inputs, postulate 

how are they related, and describe the potential roles that input determinants can play in an 

empirical model seeking to explain the skill formation process. This will serve to illustrate 

the risk of bias if one assigns contributions to variable categories following the rule 

commonly employed in the literature, and to guide the design of an alternative decomposition 

strategy that mitigates this risk. 

 

Let us divide the relevant phase of child development into two time periods. The first begins 

when the child is born and finishes at age 5, that is, when the child is ready to start the basic 

education cycle. The second period corresponds to the time when the child remains within 

primary school age, which is usually between ages 6 and 11. 

 

Let us now define the production function of skill. Skill exhibited by child 𝑖 at the end of 

period 2 (𝐴𝑖2) is a function of contemporaneous and past direct influences affecting the child. 

This is consistent with the notion that skill formation is a cumulative process. Formally: 

  

𝐴𝑖2 = 𝐴2(𝐻𝐼𝑖2, 𝐻𝐼𝑖1, 𝑆𝐼𝑖2, 𝑆𝑌𝑖2, ℎ𝑖2, ℎ𝑖1, 𝑓𝑖 , 𝜇𝑖0)     (1) 

where  𝐻𝐼𝑖1 are educational inputs provided during early childhood (period 1); 𝐻𝐼𝑖2 are 

educational inputs provided at home during period 2; 𝑆𝐼𝑖2 are educational inputs provided at 

the school where the child is enrolled during period 2; 𝑆𝑌𝑖2 are years of schooling attained 

during period 2; ℎ𝑖𝑡 indicates the child’s health status during period t; 𝑓𝑖 captures 

predetermined direct influences; and 𝜇𝑖0 is the child’s innate ability.  

 

Importantly, expression (1) denotes a structural relationship between skill and those variables 

that have a direct effect on it. These variables will reflect the environment surrounding the 

child (characterizing activities, materials and individuals), as well as child characteristics that 

influence directly the acquisition of skill. As stressed in Glewwe and Miguel (2008), all the 

variables in the production function should affect skill directly, and all the variables with a 

direct effect should be included in this function. For this analysis, I further classify these 
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direct influences as inputs (if they are determined by families’ choices during the period 

under analysis) or as predetermined (if they are outside the current choice set of families). 

The arguments in this production function are similar to those prosed in Glewwe and Miguel 

(2008) except for the presence of 𝑓𝑖. This formulation, thus, allows for predetermined child 

and parental characteristics (e.g. parental education) to have a direct influence on skill. 

 

The fact that inputs are choice variables and we seldom observe all relevant influences 

complicates the estimation of their effects due to endogeneity problems6. However, this same 

fact can provide important insights regarding the different types of relations than can be 

postulated between children’s skill and its determinants. A clear understanding of these 

relations will play an important role in the design of a decomposition strategy that minimizes 

the risk of incurring in biases when building up categories and assigning contributions. For 

this, we first need to consider a model describing families’ choice processes. 

 

The model presented here follows Glewwe and Miguel (2008) closely but extends their 

original formulation to allow for endogenous school inputs. In Glewwe and Miguel (2008), 

the authors assume that school and teacher characteristics available to the child are not 

influenced by parental decisions made during the period under analysis (between the child’s 

conception and the end of the primary school cycle). During this period, families’ choices 

related to the school environment limit to the number of years of schooling. This is 

consistent, for example, with a situation where school inputs are solely a function of the 

family’s location decision and this decision was made prior to the period under analysis and 

cannot be changed. It should be noticed that if the location decision can fully characterize the 

school inputs available to the child, the supply of educational services within each locality 

must be fairly homogeneous. 

 

In this regard, it is reasonable to assume that parents can influence the school and teacher 

characteristics available to their children either by changing location (migrating) or because 

localities are better characterized by a distribution of educational services from where parents 

can choose, rather than by a homogeneous type of school. Under this setting, the simplest 

assumption is that all families can chose a school from a common pool or choice set (see, for 

example, Todd and Wolpin (2003)). This is consistent with a situation where there is a 

similar distribution of schooling services across localities or migration costs are not 

significant. 

 

In what follows, I will adopt a more flexible approach. I will assume that families can choose 

a particular school (𝑗) with a particular set of characteristics (𝑆𝐼𝑖𝑗) from a given  

set 𝑆𝑖 = {𝑆𝐼𝑖1, … , 𝑆𝐼𝑖𝐽𝑖
}. This set is not necessarily the same for all families and is not 

necessarily defined by the locality where the family was settled at the beginning of the 

period. This allows for differences in the distribution of educational services across localities 

and for migration during the period under analysis. In broad terms, this set is defined by the 

distribution of educational services available in the geographical area within which migration 

typically occurs, a characteristic which is specific to the context under analysis. 

 

In the extreme case in which families do not change location during periods 1 and 2, this area 

will be defined by the locality where the family was established at the beginning of period 1. 

If families typically move across the entire territory or country under analysis, the school 

                                                           
6 In this case, endogeneity is understood as the presence of correlation between observed and unobserved 

influences. 
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choice set will no longer be an additional source of heterogeneity and 𝑆𝑖 = 𝑆; that is, the 

supply of educational services available to each family will have the same characteristics. 

 

At this point is worth recalling that the objective of this model is not to explain how location 

decisions are taken and how these affect the quality of school services available to the child. 

The objective is to illustrate the relation between the inputs of skill and its determinants 

allowing family choices to affect school characteristics and the fact that the supply of 

educational services available to each family is not necessarily the same. 

 

Consistent with the two-period setting assumed above, consider that parents maximise the 

following utility function: 

 

𝑈𝑖 = 𝑈(𝐶𝑖1, 𝐶𝑖2, ℎ𝑖2, ℎ𝑖1, 𝐴𝑖2; 𝜏, 𝜎, 𝜔)      (2) 

 

where 𝐶𝑖𝑡 is child 𝑖’s parental consumption of an aggregate good in period 𝑡, and 𝜏, 𝜎 and 𝜔 

reflect parental preferences regarding time, child’s skill and child’s health, respectively. 

 

Child health is determined according to the following production functions: 

 

ℎ𝑖1 = 𝐻1(𝑐𝑖1, 𝑀𝑖1, 𝐻𝐸𝑖1, 𝜂𝑖0)        (3) 

ℎ𝑖2 = 𝐻2(ℎ𝑖1, 𝑐𝑖2, 𝑀𝑖2, 𝐻𝐸𝑖2, 𝜂𝑖0)       (4) 

 

where 𝑐𝑖𝑡 is child 𝑖’s consumption of the aggregate good in period 𝑡, 𝑀𝑖𝑡 are health inputs 

provided in period 𝑡, 𝐻𝐸𝑖𝑡 captures the local health environment in period 𝑡, and  𝜂𝑖0 is the 

child’s innate healthiness.  

 

Under this setting, parents choose consumption levels (𝐶𝑖𝑡 and 𝑐𝑖𝑡), health inputs (𝑀𝑖𝑡), 

educational inputs provided during early childhood and at home (𝐻𝐼𝑖1, 𝐻𝐼𝑖2), and years of 

schooling in a particular school (𝑆𝑌𝑖2
𝑗

) to maximize utility given in (2), subject to the skill 

formation technology given in (1), the production functions for health given in (3) and (4), 

and the following budget constraint: 

 

𝑌𝑖1 − 𝑆𝑖1 = 𝑝𝑐1(𝐶𝑖1 + 𝑐𝑖1) + 𝑝𝑚1𝑀𝑖1 + 𝑝ℎ1𝐻𝐼𝑖1     (5) 

𝑌𝑖2 + (1 + 𝑟)𝑆𝑖1 = 𝑝𝑐2(𝐶𝑖2 + 𝑐𝑖2) + 𝑝𝑚2𝑀𝑖2 + 𝑝ℎ2𝐻𝐼𝑖2 + ∑ 𝑝𝑠
𝑗
𝑆𝑌𝑖21(𝑆𝑌𝑖

𝑗
= 𝑆𝑌𝑖2) 

𝐽𝑖
𝑗=1   

 (6) 

 

In (5) and (6), 𝑆𝑖1 represent savings, 𝑝𝑐𝑡 is the price of the aggregate consumption good in 

period 𝑡, 𝑝𝑚𝑡 is the price of health inputs in period 𝑡, 𝑝ℎ1 is the price of educational inputs 

provided during early childhood, 𝑝ℎ2 is the price of educational inputs provided at home 

during period 2, 𝑝𝑠
𝑗
 is the price of one year of schooling at school 𝑗, 𝑆𝑌𝑖

𝑗
 is the number of 

years of schooling demanded at school 𝑗, and 1(𝑆𝑌𝑖
𝑗

= 𝑆𝑌𝑖2)  is an indicator function that 

equals 1 in case school 𝑗 has been chosen (𝑆𝑌𝑖
𝑗

= 𝑆𝑌𝑖2) and 0 otherwise7. Finally, 𝑌𝑖𝑡 is period 

𝑡 exogenously determined income, and 𝑟 is the interest rate at which parents are assumed can 

borrow or lend between the two time periods. 

 

                                                           
7 Notice I am assuming that children do not switch schools during the period under analysis. 
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As already explained, I assume that parents can choose a particular school (𝑗) from a given 

set (𝑆𝑖; |𝑆𝑖| = 𝐽𝑖). This feature of the model implies that parents will be able not only to 

choose the number of years of schooling, but can also influence the educational inputs 

provided at school. In fact, by choosing a certain number of years of schooling at a particular 

school, parents are also determining that their child will be exposed to a certain quality of 

educational inputs. This means that we need an additional expression to fully characterize the 

optimization problem faced by parents. Formally: 

 

𝑆𝐼𝑖2 = ∑ 𝑆𝐼𝑖𝑗1(𝑆𝑌𝑖
𝑗

= 𝑆𝑌𝑖2)
𝐽𝑖
𝑗=1       (7) 

 

The first order conditions of the problem stated above provide the relationships explaining 

the optimal levels of consumption, health inputs, educational home inputs, years of schooling 

and school inputs. All of these demand functions depend on: (i) resources (𝑌𝑖1, 𝑌𝑖2); (ii) prices 

(𝑟, 𝑝, 𝑝𝑠
𝑗
) 𝑗 = 1, … , 𝐽𝑖 and 𝑝 = (𝑝𝑐1, 𝑝𝑐2, 𝑝𝑚1, 𝑝𝑚2, 𝑝ℎ1, 𝑝ℎ2); (iii) exogenous environmental 

variables (𝐻𝐸𝑖1, 𝐻𝐸𝑖2, 𝑆𝑖); (iv) predetermined direct influences (𝑓𝑖); (v) endowments (𝜇𝑖0, 

𝜂𝑖0); and (vi) preferences (𝜏, 𝜎, 𝜔). 

 

 

𝐶𝑖𝑡
∗ = 𝐶𝑡(𝑌𝑖1, 𝑌𝑖2; 𝑟, 𝑝, 𝑝𝑠

𝑗
; 𝐻𝐸𝑖1, 𝐻𝐸𝑖2, 𝑆𝑖; 𝑓𝑖; 𝜇𝑖0, 𝜂𝑖0; 𝜏, 𝜎, 𝜔)    

 𝑡 = 1,2;  𝑗 = 1, … , 𝐽𝑖  (8) 

 

𝑐𝑖𝑡
∗ = 𝑐𝑡(𝑌𝑖1, 𝑌𝑖2; 𝑟, 𝑝, 𝑝𝑠

𝑗
; 𝐻𝐸𝑖1, 𝐻𝐸𝑖2, 𝑆𝑖; 𝑓𝑖; 𝜇𝑖0, 𝜂𝑖0; 𝜏, 𝜎, 𝜔)  

 𝑡 = 1,2;  𝑗 = 1, … , 𝐽𝑖   (9) 

 

𝑀𝑖𝑡
∗ = 𝑀𝑡(𝑌𝑖1, 𝑌𝑖2; 𝑟, 𝑝, 𝑝𝑠

𝑗
; 𝐻𝐸𝑖1, 𝐻𝐸𝑖2, 𝑆𝑖; 𝑓𝑖; 𝜇𝑖0, 𝜂𝑖0; 𝜏, 𝜎, 𝜔)  

 𝑡 = 1,2;  𝑗 = 1, … , 𝐽𝑖  (10) 

 

𝐻𝐼𝑖𝑡
∗ = 𝐻𝑡(𝑌𝑖1, 𝑌𝑖2; 𝑟, 𝑝, 𝑝𝑠

𝑗
; 𝐻𝐸𝑖1, 𝐻𝐸𝑖2, 𝑆𝑖; 𝑓𝑖; 𝜇𝑖0, 𝜂𝑖0; 𝜏, 𝜎, 𝜔)  

 𝑡 = 1,2;  𝑗 = 1, … , 𝐽𝑖  (11) 

 

𝑆𝑌𝑖2
∗ = 𝑆𝑌(𝑌𝑖1, 𝑌𝑖2; 𝑟, 𝑝, 𝑝𝑠

𝑗
; 𝐻𝐸𝑖1, 𝐻𝐸𝑖2, 𝑆𝑖; 𝑓𝑖; 𝜇𝑖0, 𝜂𝑖0; 𝜏, 𝜎, 𝜔)    

        𝑗 = 1, … , 𝐽𝑖 (12) 

 

𝑆𝐼𝑖2
∗ = ∑ 𝑆𝐼𝑖𝑗1(𝑆𝑌𝑖

𝑗
= 𝑆𝑌𝑖2

∗ ) 
𝐽𝑖
𝑗=1        

 (13) 

 

The production function indicated in (1) involves only and all of the variables that have a 

direct effect on skill, whether they are predetermined or not. In addition to this function, there 

are other three meaningful relations that can be postulated to explain children’s skill: a 

demand function, a conditional demand function, and the hybrid production function already 

mentioned in section 2. In what follows I briefly describe these functions to clarify the role 

that exogenous input determinants can play in the estimation of the production function of 

skill8. 

 

                                                           
8 For a more complete description of how to obtain and interpret these functions, the reader can consult Glewwe 

and Miguel (2008).  
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The demand function involves only predetermined variables that can have a direct or indirect 

effect on skill. It can be obtained by replacing (11), (12) and (13) in (1), replacing (9) and 

(10) in (3) and (4) and solving the demand for child’s health in periods 1 and 2, and inserting 

these solutions into (1). This yields: 

 

𝐴𝑖2 = 𝐴2
𝐷(𝑌𝑖1, 𝑌𝑖2; 𝑟, 𝑝, 𝑝𝑠

𝑗
; 𝐻𝐸𝑖1, 𝐻𝐸𝑖2, 𝑆𝑖; 𝑓𝑖; 𝜇𝑖0, 𝜂𝑖0; 𝜏, 𝜎, 𝜔)  𝑗 = 1, … , 𝐽𝑖  (14) 

 

The conditional skill demand function (conditioned over input 𝑘) only involves input 𝑘 and 

controls for the exogenous determinants of those inputs not included. To obtain this relation 

we need first to consider the demand functions for the rest of inputs conditioned over input 𝑘. 

These are obtained by fixing input 𝑘 at its utility maximising level, which implies that prices 

related to input 𝑘 and resources devoted to its consumption are no longer relevant arguments 

of the demand for the rest of inputs. 

 

For example, demand functions for educational inputs provided during early childhood and at 

home conditioned over school inputs (years of schooling and school characteristics) are given 

by: 

 

𝐻𝐼𝑖𝑡
𝐶𝐷 = 𝐻𝑡(𝑆𝐼𝑖2, 𝑆𝑌𝑖2; 𝑌𝐶𝐷;  𝑝; 𝐻𝐸𝑖1, 𝐻𝐸𝑖2; 𝑓𝑖; 𝜇𝑖0, 𝜂𝑖0; 𝜏, 𝜎, 𝜔)  𝑡 = 1,2     (15) 

where 𝑌𝐶𝐷 refers to resources after adjusting for school expenditures 𝑌𝐶𝐷 = 𝑌𝑖1 +
𝑌𝑖2

1+𝑟
−

𝑝𝑠
𝑗
𝑆𝑌𝑖2

1+𝑟
. 

As already noted, the price of schooling (𝑝𝑠
𝑗
) is no longer present in (15).  

 

Similar expressions can be obtained for the demand for child’s health in both periods after 

building conditional demand functions for child’s consumption and health inputs. Replacing 

conditional demand functions for early childhood and educational home inputs and child’s 

health in the production function given in (1) yields the demand for child’s skill conditioned 

over school inputs. Formally: 

 

𝐴𝑖2 = 𝐴2
𝐶𝐷(𝑆𝐼𝑖2, 𝑆𝑌𝑖2; 𝑌𝐶𝐷; 𝑝; 𝐻𝐸𝑖1, 𝐻𝐸𝑖2; 𝑓𝑖; 𝜇𝑖0, 𝜂𝑖0; 𝜏, 𝜎, 𝜔)      (16) 

 

Finally, and following the example centred on school inputs, a hybrid production function 

can be obtained if we replace all inputs in (1), except those related to the school environment, 

by their respective demand functions. Thus we obtain: 

 

𝐴𝑖2 = 𝐴2
𝐻(𝑆𝐼𝑖2, 𝑆𝑌𝑖2; 𝑌𝑖1, 𝑌𝑖2; 𝑟, 𝑝, 𝑝𝑠

𝑗
; 𝐻𝐸𝑖1, 𝐻𝐸𝑖2, 𝑆𝑖; 𝑓𝑖; 𝜇𝑖0, 𝜂𝑖0; 𝜏, 𝜎, 𝜔)   𝑗 = 1, … , 𝐽𝑖   (17) 

 

The differences between expressions (1), (15), (16) and (17) have important consequences for 

empirical work. Consider, for example, the difference between the effects of school inputs 

provided by equations (1) and (16). The effect of school inputs captured in equation (1) 

corresponds only to the direct impact of these inputs on skill, holding all other direct 

influences constant. The effect of school inputs provided by expression (16) includes this 

direct influence but also captures the indirect effect produced through changes in other inputs 

within the choice set of parents. Accordingly, experimental designs and instrumental variable 
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techniques will typically identify the latter; i.e. they will typically identify the parameters of a 

conditional demand function (or the “policy effects” as denoted in Todd and Wolpin (2003))9. 

 

A hybrid function allows one to recover the parameters of the production function of 

observed inputs. The motivation for this type of specification is empirical and stems from the 

possibility of evading omitted variable biases originated by the presence of unobserved 

inputs. Under the rationale of a model of family choice such as the one described above, the 

use of exogenous input determinants in the estimation of a production function implies that 

the researcher believes in the possibility of omitted inputs and these have been replaced by 

their corresponding demand functions. 

 

4. The cognitive skill gap, empirical specifications and decomposition 

strategies 
 

In this section I use the insights provided by the model described above to illustrate the 

potential biases that can be introduced by the rule commonly employed in the literature to 

assign the contribution of individual variables to the categories proposed for the 

decomposition. For this, I will consider the decomposition of the cognitive skill gap 

observed, in period 2, between children belonging to two generic groups (A and B). I will 

consider two different specifications and the feasible components related to each of them. I 

will start discussing the potential biases present under the rule commonly employed in the 

literature (standard decomposition rule). I will then present an alternative decomposition 

strategy less prone to these biases, and discuss its rationale under the lens of the Oaxaca-

Blinder technique. 

 

4.1. The risk of bias under the standard decomposition rule 

 

Let us assume that the production function given in (1) is approximately linear. To ease the 

exposition, also assume that parameters are age invariant (they only depend on the relative 

separation between the timing of the input and the measurement of skill) and that years of 

schooling (𝑆𝑌𝑖2) are contained within the vector of school inputs (𝑆𝐼𝑖2)10. This allows one to 

express the production function of skill as follows: 

 

 𝐴𝑖2 = 𝐻𝐼𝑖2
′ 𝛾1 + 𝐻𝐼𝑖1

′ 𝛾2 + 𝑆𝐼𝑖2
′ 𝜙1 + ℎ𝑖2𝜑1 + ℎ𝑖1𝜑2 + 𝑓𝑖

′𝜆(2) + 𝜇𝑖0𝛽(2)   (18) 

 

This can be regarded as a “cumulative model” where skill exhibited at the end of period 2 is 

expressed as a function of all relevant direct influences that took place until that moment. It is 

also possible to express 𝐴𝑖2 as a function of lagged skill and period 2 influences only. For 

this, consider that period 1 skill can be written as:  

 

𝐴𝑖1 =  𝐻𝐼𝑖1
′ 𝛾1 + ℎ𝑖1𝜑1 + 𝑓𝑖

′𝜆 + 𝜇𝑖0𝛽 

(19) 

 

The assumption of age-invariant parameters implies that 𝛾1 and 𝜑1 are the same in (18) and 

(19). In (19), they indicate the effect of period 1 educational and health inputs on period 1 

                                                           
9 Notice that in an experimental setting introducing exogenous variation in a certain input nothing prevents post-

treatment values of other inputs to change in response to treatment. 
10 The analysis can be extended to the more general case of age-dependent parameters at the cost of 

complicating notation with no effect on its main results. 
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skill. Also notice that parameters 𝜆 and 𝛽 in (19) indicate the effect of predetermined direct 

influences and innate ability in period 1, respectively, while parameters 𝜆(2) and 𝛽(2) in (18) 

express the cumulative effect (until period 2) of this same pair of influences.   

 

If we subtract 𝜌𝐴𝑖1 from (18) and assume that the effect of inputs decays at a rate 𝜌 we 

obtain11: 

 

𝐴𝑖2 = 𝜌𝐴𝑖1 +  𝐻𝐼𝑖2
′ 𝛾1 + 𝑆𝐼𝑖2

′ 𝜙1 + ℎ𝑖2𝜑1 + 𝑓𝑖
′𝜆 + 𝜇𝑖0𝛽   (20) 

 

where 𝜆 = 𝜆(2) − 𝜌𝜆 and 𝛽 = 𝛽(2) − 𝜌𝛽. These parameters capture the contemporaneous 

(period 2) effect of predetermined direct influences and innate ability. The expression given 

in (20) is known as a “value added model”.  

 

Consistent estimation of the parameters involved in (18) is problematic because we seldom 

observe innate ability and all relevant inputs. A value added model can allow one to partially 

circumvent this problem if lagged skill is a sufficient statistic for assignment mechanisms that 

correlate with unobservable influences (e.g. if children end up sorted into different schools 

according to their pre-school skill). In this regard, several recent studies reviewed in Singh 

(2015) have shown that value added models can provide reliable estimates of the individual 

effects of skill inputs. A value added model, however, will not allow one to control for 

omitted period 2 inputs. 

 

Hybrid models stand out as a popular empirical strategy to try to circumvent the problem of 

omitted inputs. As already explained, the objective is to control for omitted inputs using the 

arguments of their corresponding demand function. Quick inspection of Table 1 reveals that 

all studies that have attempted to decompose the “explained” part of the gap rely on some 

form of hybrid specification. In fact, they all control for family or household characteristics 

that do not have a direct effect on skill but can influence it through the purchase of 

educational home or school inputs. 

 

The risk of obtaining biased estimates of the individual effects of inputs under different 

empirical specifications (including the value added and hybrid models presented here)  

has already been addressed in the literature (Todd and Wolpin, 2003, 2007). In the example 

that follows I will focus on another type of bias affecting linear gap decompositions that has 

not been acknowledged yet in the literature. As already mentioned, this has to do with the 

rules employed to assign variables into different categories. 

 

For this, let us shift to the empirical versions of (18) and (20) assuming that cognitive skill is 

measured with error through the scores obtained in some test: 𝑇𝑖2 = 𝐴𝑖2 + 휀𝑖2. Also assume 

there is a single unobserved input from each period, one belonging to the early childhood 

environment (𝐻𝐼𝑖1
𝑈 ) and the other to the school environment (𝑆𝐼𝑖2

𝑈 )12.  

 

This yields the following production function of skill: 

 

                                                           
11 Appendix 1 presents more detail regarding how this assumption ensures that the model is no longer a function 

of period 1 inputs. It also presents the more general case of parameters that depend on child’s age. This should 

help clarify why the absence of period 1 inputs in (20) does not depend on the assumption of age-invariant 

parameters but on the assumption that the effect of inputs decay at a rate equal to 𝜌. 
12 The analysis can be extended to the more general case were we have several omitted inputs from both periods 

without affecting its main results. 
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𝑇𝑖2 =  𝐻𝐼𝑖2
′ 𝛾1 + 𝐻𝐼𝑖1

′ 𝛾2 + 𝑆𝐼𝑖2
′ 𝜙1 + ℎ𝑖2𝜑1 + ℎ𝑖1𝜑2 + 𝑓𝑖

′𝜆(2)

+ [𝐻𝐼𝑖1
𝑈 𝛾2

𝑈 + 𝑆𝐼𝑖2
𝑈 𝜙1

𝑈 + 𝜇𝑖0𝛽(2) + 휀𝑖2] 
(21) 

This has a value-added version given by: 

 

𝑇𝑖2 = 𝜌𝑇𝑖1 +  𝐻𝐼𝑖2
′ 𝛾1 + 𝑆𝐼𝑖2

′ 𝜙1 + ℎ𝑖2𝜑1 + 𝑓𝑖
′𝜆 + [𝑆𝐼𝑖2

𝑈 𝜙1
𝑈 + 𝜇𝑖0𝛽 + 휀𝑖2 − 𝜌휀𝑖1] 

(22) 

 

The elements in brackets at the right hand side of (21) and (22) are contained in the 

corresponding error terms of both specifications.  

 

Following the results of the model presented in the previous section, the demand functions of 

the inputs of skill (including those omitted) depend on predetermined household, family and 

child characteristics that influence skill directly (𝑓𝑖) and other exogenous input determinants 

capturing differences in resources, prices, environments and preferences. Assume the latter 

are contained in a vector (𝑧𝑖) and that demand functions can be expressed linearly. 

Accordingly, the demand functions for omitted inputs can be written as follows: 

 

𝐻𝐼𝑖1
𝑈 = 𝑧𝑖

′𝛿1 + 𝑓𝑖
′𝜅1 + 𝜏1𝐺𝑖 + 𝑣𝑖1 

𝑆𝐼𝑖2
𝑈 = 𝑧𝑖

′𝛿2 + 𝑓𝑖
′𝜅2 + 𝜏2𝐺𝑖 + 𝑣𝑖2 

(23) 

 

Where 𝑣𝑖1 and 𝑣𝑖2 capture random shocks to the demand function. Variable 𝐺𝑖 denotes 

membership to the groups considered to define the gap in cognitive skill (𝐺𝑖 = 1 if the child 

belongs to group A and 𝐺𝑖 = 0 if she belongs to group B). This indicator will typically have a 

role within 𝑧𝑖 or even 𝑓𝑖 as achievement gaps are usually defined in terms of children’s 

ethnicity or geographical domain (see Table 1). In other words, I am considering the fairly 

general case where the indicator of the groups used to define the achievement gap can be 

included among the arguments of the demand function of inputs13. In (23) I have considered 

this variable separately from 𝑧𝑖 and 𝑓𝑖 to ease the exposition of the decomposition strategies.       

 

If we replace (23) in (21) and collect terms, it is possible to build the following linear hybrid 

specification. 

 

𝑇𝑖2 =  𝐻𝐼𝑖2
′ 𝛾1 + 𝐻𝐼𝑖1

′ 𝛾2 + 𝑆𝐼𝑖2
′ 𝜙1 + ℎ𝑖2𝜑1 + ℎ𝑖1𝜑2 + 𝑓𝑖

′(𝜆(2) + 𝛾2
𝑈𝜅1 + 𝜙1

𝑈𝜅2)

+ 𝑧𝑖
′(𝛾2

𝑈𝛿1 + 𝜙1
𝑈𝛿2) + (𝜏1𝛾2

𝑈 + 𝜏2𝜙1
𝑈)𝐺𝑖 + [𝑣𝑖2𝜙1

𝑈 + 𝑣𝑖1𝛾2
𝑈 + 𝜇𝑖0𝛽(2) + 휀𝑖2] 

(24) 

A similar exercise for the value added specification yields: 

 

𝑇𝑖2 = 𝜌𝑇𝑖1 +  𝐻𝐼𝑖2
′ 𝛾1 + 𝑆𝐼𝑖2

′ 𝜙1 + ℎ𝑖2𝜑1 + 𝑓𝑖
′(𝜆 + 𝜙1

𝑈𝜅2) + 𝑧𝑖
′𝜙1

𝑈𝛿2 + 𝜏2𝜙1
𝑈𝐺𝑖

+ [𝑣𝑖2𝜙1
𝑈 + 𝜇𝑖0𝛽 + 휀𝑖2 − 𝜌휀𝑖1] 

(25) 

 

Expressions (24) and (25) lead to the following empirical specifications: 

 

                                                           
13 For example, the geographical domain can be a relevant argument in a demand function insofar it controls for 

differences in exogenous environmental variables such as the general health status of the availability of 

educational services (𝐻𝐸𝑖1, 𝐻𝐸𝑖2 , 𝑆𝑖 in the model presented above). 
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𝑇𝑖2 =  𝐻𝐼𝑖2
′ 𝛾1 + 𝐻𝐼𝑖1

′ 𝛾2 + 𝑆𝐼𝑖2
′ 𝜙1 + ℎ𝑖2𝜑1 + ℎ𝑖1𝜑2 + 𝑓𝑖

′𝜋 + 𝑧𝑖
′𝜓 + 𝜃𝐺𝑖 + 𝑒𝑖2

𝐻  

(26) 

 

𝑇𝑖2 = 𝜌𝑇𝑖1 +  𝐻𝐼𝑖2
′ 𝛾1 + 𝑆𝐼𝑖2

′ 𝜙1 + ℎ𝑖2𝜑1 + 𝑓𝑖
′�̃� + 𝑧𝑖

′�̃� + �̃�𝐺𝑖 + 𝑒𝑖2
𝑉𝐴  (27) 

Let us now define the achievement gap as the difference in expected skill between children 

belonging to groups A and B (𝐸(𝐴𝑖2|𝐴) − 𝐸(𝐴𝑖2|𝐵)). Its empirical counterpart is given by: 

�̅�𝐴2 − �̅�𝐵2, where upper bars indicate sample means. The inclusion of the group indicator 

ensures that an OLS regression passes through the mean of both groups. Thus, for the hybrid-

cumulative specification we have: 

 

�̅�𝐴2 − �̅�𝐵2 = (𝐻𝐼̅̅̅̅
𝐴2 − 𝐻𝐼̅̅̅̅

𝐵2)′𝛾1 + (𝐻𝐼̅̅̅̅
𝐴1 − 𝐻𝐼̅̅̅̅

𝐵1)′𝛾2 + (𝑆�̅�𝐴2 − 𝑆�̅�𝐵2)′�̂�1 + (ℎ̅𝐴2 − ℎ̅𝐵2)�̂�1

+ (ℎ̅𝐴1 − ℎ̅𝐵1)�̂�2 + (�̅�
𝐴

− �̅�
𝐵

)
′
�̂� + (�̅�𝐴 − �̅�𝐵)′�̂� + 𝜃 

(28) 

And, for the hybrid-value added:  

 

�̅�𝐴2 − �̅�𝐵2 = (�̅�𝐴1 − �̅�𝐵1)�̂� + (𝐻𝐼̅̅̅̅
𝐴2 − 𝐻𝐼̅̅̅̅

𝐵2)′𝛾1 + (𝑆�̅�𝐴2 − 𝑆�̅�𝐵2)′�̂�1 + (ℎ̅𝐴2 − ℎ̅𝐵2)�̂�1

+ (�̅�
𝐴

− �̅�
𝐵

)
′
�̂̃� + (�̅�𝐴 − �̅�𝐵)′�̂̃� + �̃̂� 

 

(29) 

If seek to decompose �̅�𝐴2 − �̅�𝐵2, the feasible components will depend on the specification 

being used. Both specifications allow one to identify the contribution of observed inputs 

provided during period 2. The hybrid-cumulative specification also allows one to separately 

estimate the contribution of early childhood educational and health inputs. The hybrid-value 

added model, however, aggregates all early childhood influences into a single component 

((�̅�𝐴1 − �̅�𝐵1)�̂�) containing the contribution of early childhood educational and health inputs, 

and also the contribution due to the early childhood effect of predetermined direct influences 

and innate ability.   

 

In a similar fashion as most of the empirical work surveyed in Table 1, consider a researcher 

using a hybrid-cumulative specification and interested in comparing the contribution of 

“family influences” vs. the contribution of “school influences”. Another researcher using a 

hybrid-value added model seeks to compare the contribution of period 2 “family influences” 

vs. the contribution of “school influences”. For this, both need to devise a rule determining 

what constitutes a family influence. As documented in section 2, the rule commonly 

employed in the literature has been to assign all household, family and child characteristics 

(both inputs and input determinants) into this category. Consider both researchers follow this 

standard rule and propose the decompositions that follow. 
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Table 3: Categories and variables included under the standard decomposition rule  

 

Hybrid-cumulative Hybrid-value added 

Family influences 

(�̂�) 

(𝐻𝐼̅̅̅̅
𝐴2 − 𝐻𝐼̅̅̅̅

𝐵2)′�̂�1

+ (𝐻𝐼̅̅̅̅
𝐴1 − 𝐻𝐼̅̅̅̅

𝐵1)′�̂�2  

+ (𝑓�̅� − 𝑓�̅�)
′
�̂�

+ (𝑧�̅� − 𝑧�̅�)′�̂� 

Period 2 family 

influences (�̂�2) 

(𝐻𝐼̅̅̅̅
𝐴2 − 𝐻𝐼̅̅̅̅

𝐵2)′�̂�1

+ (𝑓�̅� − 𝑓�̅�)
′
�̂̃�

+ (𝑧�̅� − 𝑧�̅�)′�̂̃� 

School inputs 
(𝑆�̅�𝐴2 − 𝑆�̅�𝐵2)′�̂�1

+ (𝑆𝑌̅̅̅̅
𝐴2 − 𝑆𝑌̅̅̅̅

𝐵2)′�̂�1 
School inputs 

(𝑆�̅�𝐴2 − 𝑆�̅�𝐵2)′�̂�1

+ (𝑆𝑌̅̅̅̅
𝐴2 − 𝑆𝑌̅̅̅̅

𝐵2)′�̂�1 

Health inputs 
(ℎ̅𝐴2 − ℎ̅𝐵2)�̂�1

+ (ℎ̅𝐴1 − ℎ̅𝐵1)�̂�2 

Period 2 health 

inputs 
(ℎ̅𝐴2 − ℎ̅𝐵2)�̂�1 

-- -- Past influences (�̅�𝐴1 − �̅�𝐵1)�̂� 

Unexplained 𝜃 Unexplained �̃̂� 

 

 

Consistent with the standard decomposition rule, the contributions of variables contained in 

𝑓𝑖 and 𝑧𝑖 have been assigned to the category hosting family influences as they comprise 

characteristics that belong to this environment. Also notice that the contribution of the group 

indicator (�̂� or �̂� depending on the specification) has been assigned to a component labelled 

“unexplained”. This ensures these decompositions are consistent with the general OB 

approach employed in the literature. In fact, our researchers are using an OB decomposition 

where the “unexplained” part of the gap corresponds to the difference in coefficients 

measured with respect to a reference group built using a pooled regression which includes the 

group indicator (labelled OB pooled* in Table 2), 

 

To see the potential for bias in the two decompositions given above, let us focus on the 

estimated contribution of the first two components, starting with �̂�.  If we consider a 

sufficiently large sample and the expression given in (24) it is not difficult to see that: 

 

�̂� = (𝐻𝐼̅̅̅̅
𝐴2 − 𝐻𝐼̅̅̅̅

𝐵2)′𝛾1 + (𝐻𝐼̅̅̅̅
𝐴1 − 𝐻𝐼̅̅̅̅

𝐵1)′𝛾2  + (𝑓�̅� − 𝑓�̅�)
′
(�̂�(2) + 𝛾2

𝑈�̂�1 + �̂�1
𝑈�̂�2)

+ (𝑧�̅� − 𝑧�̅�)′(𝛾2
𝑈�̂�1 + �̂�1

𝑈𝛿2) 

 

(30) 

From the demand functions of omitted inputs is possible to write: 

 

𝐻𝐼̅̅̅̅
𝐴1
𝑈 − 𝐻𝐼̅̅̅̅

𝐵1
𝑈 = (𝑧�̅� − 𝑧�̅�)′𝛿1 + (𝑓�̅� − 𝑓�̅�)

′
�̂�1 + �̂�1 

𝑆�̅�𝐴2
𝑈 − 𝑆�̅�𝐵2

𝑈 = (𝑧�̅� − 𝑧�̅�)′𝛿2 + (𝑓�̅� − 𝑓�̅�)
′
�̂�2 + �̂�2 

(31) 

 

Combining (30) and (31) we obtain: 
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�̂� = (𝐻𝐼̅̅̅̅
𝐴2 − 𝐻𝐼̅̅̅̅

𝐵2)′𝛾1 + (𝐻𝐼̅̅̅̅
𝐴1 − 𝐻𝐼̅̅̅̅

𝐵1)′𝛾2  + (𝑓�̅� − 𝑓�̅�)
′
�̂�(2) + 𝛾2

𝑈(𝐻𝐼̅̅̅̅
𝐴1
𝑈 − 𝐻𝐼̅̅̅̅

𝐵1
𝑈 − �̂�1)

+ �̂�1
𝑈(𝑆�̅�𝐴2

𝑈 − 𝑆�̅�𝐵2
𝑈 − �̂�2) 

(32) 

 

The presence of bias is clear as this expression involves elements that belong to the 

contribution of school inputs. Notice that the direct contribution of predetermined direct 

influences ((𝑓�̅� − 𝑓�̅�)
′
�̂�(2)) does belong to this category as we are trying to measure the 

contribution of all family or household influences. The contribution that operates through the 

demand of omitted inputs, however, does not entirely belong to this category because of the 

presence of omitted school inputs.  

 

Consider a situation where the group indicator plays only a marginal role in the demand 

function of omitted inputs (𝜏1 = 𝜏2 = 0). In this case, the estimated contribution of family 

influences (�̂�) would be able to account for the omitted early childhood input but at the cost 

of overstating the importance of this category as it would also be including the contribution 

of the omitted school input14.      

 

Let us now analyse what lies behind the estimated contribution of period 2 family influences 

built using the hybrid-value added specification. A sufficiently large sample and the 

expression given in (25) allow us to write: 

 

�̂�2 = (𝐻𝐼̅̅̅̅
𝐴2 − 𝐻𝐼̅̅̅̅

𝐵2)′𝛾1 + (𝑓�̅� − 𝑓�̅�)
′
(�̂�2 + �̂�1

𝑈�̂�2) + (𝑧�̅� − 𝑧�̅�)′�̂�1
𝑈𝛿2 

(33) 

Combining (31) and (33) yields: 

 

�̂�2 = (𝐻𝐼̅̅̅̅
𝐴2 − 𝐻𝐼̅̅̅̅

𝐵2)′𝛾1 + (𝑓�̅� − 𝑓�̅�)
′
�̂�2 + �̂�1

𝑈(𝑆�̅�𝐴2
𝑈 − 𝑆�̅�𝐵2

𝑈 − �̂�2) 

(34) 

 

In this case the presence of a positive bias is even clearer as none of the positive elements 

added to (𝐻𝐼̅̅̅̅
𝐴2 − 𝐻𝐼̅̅̅̅

𝐵2)′𝛾1  (besides the period 2 effect of predetermined direct influences) 

belong to this category.  

 

This analysis has shown that, unless we are able to claim the all omitted inputs belong to a 

certain category, including variables that reflect predetermined direct influences or input 

determinants into this category will likely lead to a positive bias in its estimated contribution. 

In particular, it has exposed how decompositions based on the standard rule of assigning all 

available household, family and child characteristics into a single category can lead to an 

overstatement of the importance of influences related to the home or family environment vis-

à-vis that of school inputs, especially when data on school characteristics is not particularly 

rich.   

 

Based on this, in what follows I propose an alternative decomposition strategy. This strategy 

acknowledges the difference and relations between skill inputs and skill input determinants 

and, as will be explained below, can be regarded as a special type of OB decomposition. 

 

 

                                                           
14 Notice I am assuming that all inputs have a positive effect on skill (i.e. that the parameters in the production 

function of skill are all positive) and that group A exhibits an advantage with respect to group B. 
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4.2. An alternative decomposition strategy: Oaxaca-Blinder with a twist 

 

This strategy is takes into account the parameter structure behind the empirical specifications 

of the hybrid and hybrid-value added models. This structure stems from the fact that 

predetermined direct influences (𝑓𝑖), exogenous input determinants (𝑧𝑖) and the group 

indicator (𝐺𝑖) control for all omitted inputs through their demand equations. As described in 

equations (24) and (26), parameters accompanying 𝑓𝑖, 𝑧𝑖 and 𝐺𝑖 in the hybrid specification 

considered for the example given above are as follows: 𝜋 = 𝜆(2) + 𝛾2
𝑈𝜅1 + 𝜙1

𝑈𝜅2;  

𝜓 = 𝛾2
𝑈𝛿1 + 𝜙1

𝑈𝛿2; and 𝜃 = 𝜏1𝛾2
𝑈 + 𝜏2𝜙1

𝑈. Parameters accompanying these same variables 

in the hybrid-value added specification are as follows (see equations (25) and (27)): 

�̃� = 𝜆(2) + 𝜙1
𝑈𝜅2; �̃� = 𝜙1

𝑈𝛿2; and �̃� = 𝜏2𝜙1
𝑈. 

 

An important implication of this parameter structure is that, in absence of further restrictions, 

it will not be possible to separately identify the direct and indirect effects of predetermined 

direct influences (𝑓𝑖). Strong assumptions are also required to claim that omitted inputs 

belong only to either the family or school environment in order to assign the contribution of 

all the arguments belonging to demand functions to one of these categories.  

 

Based on the above, the decomposition strategy proposed here will assign the contribution of 

all variables contained in 𝑓𝑖 and 𝑧𝑖 and the indicator function (𝐺𝑖) into a special category 

hosting the contribution of predetermined direct influences and omitted inputs in general. In 

the particular case of the hybrid-value added plus specification, this joint contribution will 

consider only period 2 predetermined direct influences and period 2 omitted inputs. The 

following table summarizes the categories proposed based on the contributions given in (28) 

and (29). 

 

Table 4: Categories and variables included under the alternative decomposition 

strategy  

 

Hybrid-cumulative Hybrid-value added 

Early childhood 

and home inputs 

(𝐻𝐼̅̅̅̅
𝐴2 − 𝐻𝐼̅̅̅̅

𝐵2)′𝛾1

+ (𝐻𝐼̅̅̅̅
𝐴1 − 𝐻𝐼̅̅̅̅

𝐵1)′𝛾2 

Period 2 home 

inputs 
(𝐻𝐼̅̅̅̅

𝐴2 − 𝐻𝐼̅̅̅̅
𝐵2)′𝛾1 

Health inputs 
(ℎ̅𝐴2 − ℎ̅𝐵2)�̂�1

+ (ℎ̅𝐴1 − ℎ̅𝐵1)�̂�2 

Period 2 health 

inputs 
(ℎ̅𝐴2 − ℎ̅𝐵2)�̂�1 

School inputs 
(𝑆�̅�𝐴2 − 𝑆�̅�𝐵2)′�̂�1

+ (𝑆𝑌̅̅̅̅
𝐴2 − 𝑆𝑌̅̅̅̅

𝐵2)′�̂�1 
School inputs 

(𝑆�̅�𝐴2 − 𝑆�̅�𝐵2)′�̂�1

+ (𝑆𝑌̅̅̅̅
𝐴2 − 𝑆𝑌̅̅̅̅

𝐵2)′�̂�1 

Predetermined 

direct influences 

and omitted 

inputs 

(𝑓�̅� − 𝑓�̅�)
′
�̂�

+ (𝑧�̅� − 𝑧�̅�)′�̂� + �̂� 

Period 2 

predetermined 

direct influences 

and period 2 

omitted inputs 

(𝑓�̅� − 𝑓�̅�)
′
�̂̃�

+ (𝑧�̅� − 𝑧�̅�)′�̂̃� + �̂̃� 

-- -- Past influences (�̅�𝐴1 − �̅�𝐵1)�̂� 

 

The parameter structure described above also allows for a simple test for omitted inputs by 

analysing the significance of the contribution of exogenous input determinants in the hybrid 

specifications. In fact, rejection of the null hypothesis (𝑧�̅� − 𝑧�̅�)′𝜓 + 𝜃 = 0 or  
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(𝑧�̅� − 𝑧�̅�)′�̃� + �̃� = 0 in the corresponding specification implies the presence of at least one 

omitted input15. Rejection of the null (𝑧�̅� − 𝑧�̅�)′�̃� + �̃� = 0 in the hybrid-value added plus 

specification further implies the presence of at least one omitted period 2 input. 

 

It is worth recalling from the discussion in section 2 that there are different ways to 

implement the OB decomposition and that there are several possible interpretations for the 

“unexplained” part of the gap. One can choose between a “threefold” or a “twofold” 

decomposition, and one needs to decide which will be the reference group used to measure 

the difference in coefficients that produces the “unexplained” part of the gap. This 

“unexplained” part, in turn, can be interpreted as actually capturing a difference in returns to 

inputs or the presence of omitted inputs. 

 

The decomposition strategy proposed here can be considered as a special case of “twofold” 

OB decomposition. In fact, inclusion of the group indicator 𝐺𝑖 in the hybrid models described 

above ensures I am using the same coefficient estimates than those required to build the OB 

decomposition that uses the results of a pooled regression as a reference (OB pooled*; see 

Table 2). Moreover, this can be regarded as an OB decomposition where the “unexplained” 

part of the gap is interpreted as capturing the contribution of omitted inputs.  

 

So, is this just another OB decomposition to add to the list given in Table 1?  The distinctive 

feature of this decomposition strategy is that it is based on the results of a model that 

postulates a relation between cognitive skill and its inputs, and describes how families’ 

choices determine these inputs. In terms of an OB approach, this prevents arbitrary choices of 

reference group and interpretation of the “unexplained” part of the gap. It also makes explicit 

the difference between inputs and input determinants which, in turn, prevents the use of rules 

that can introduce bias by assigning the contribution of one category into another. In fact, this 

is the reason why, as opposed to a more standard OB decomposition, in this strategy the 

group indicator is not the only variable accounting for omitted inputs. Predetermined direct 

influences and exogenous input determinants are also included in the category hosting 

omitted inputs as they all have a role as arguments in their demand functions. 

 

This feature of the decomposition strategy can be related to the message conveyed by 

Neumark’s analysis relating different assumptions in terms of firm behaviour to the choice of 

reference group for an OB decomposition seeking to measure the contribution of 

“discrimination” to a wage gap (Neumark, 1988). In similar fashion, if one seeks to measure 

the contribution of different types of inputs to a certain cognitive skill gap by means of a 

particular decomposition strategy, one needs to be aware of the assumptions in terms of 

family behaviour that allow one to recover these contributions16. In sum, to avoid arbitrary 

choices in terms of components and interpretations, the choice of decomposition strategy 

                                                           
15 Consider the case of the hybrid-cumulative model. Rejection of the null (𝑧�̅� − 𝑧�̅�)′𝜓 + 𝜃 = 0 implies that 

𝜓 ≠ 0 or 𝜃 ≠ 0. Given that 𝜓 = 𝛾2
𝑈𝛿1 + 𝜙1

𝑈𝛿2 and 𝜃 = 𝜏1𝛾2
𝑈 + 𝜏2𝜙1

𝑈, 𝜓 ≠ 0 or 𝜃 ≠ 0 implies that either 

𝛾2
𝑈𝛿1 ≠ 0 or  𝜙1

𝑈𝛿2 ≠ 0 or 𝜏1𝛾2
𝑈 ≠ 0 or 𝜏2𝜙1

𝑈 ≠ 0. It suffices for one of these inequalities to hold to conclude 

that there is at least one omitted input (either 𝛾2
𝑈 or 𝜙1

𝑈 are different than cero) and that  𝑧𝑖 or 𝐺𝑖 is a relevant 

argument in its demand function. Notice that failure to reject the hypothesis (𝑧�̅� − 𝑧�̅�)′𝜓 + 𝜃 = 0 does not 

directly imply the absence of omitted inputs. For example, parameters in 𝜓 and 𝜃 can be zero even if  𝛾2
𝑈 ≠ 0 

and 𝜙1
𝑈 ≠ 0 (i.e. there are omitted inputs from both periods) if the proposed exogenous input determinants have 

no role in their demand equations (𝛿1 = 0, 𝛿2 = 0, 𝜏1 = 0, 𝜏2 = 0). This could be the case if the variables 

considered as predetermined direct influences (𝑓𝑖) fully characterize the demand for omitted inputs. 
16 For example, assuming that family choices play no role in determining the characteristics of schools hosting 

their children would allow one to assign all demand function arguments to the early childhood and home inputs 

category. Doing this would resemble the standard decomposition rule. 
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should not be made without consideration of the underlying behavioural assumptions that 

allow one to identify the contributions of interest.  

 

 

5. An illustration using Peruvian data 
 

In what follows I will illustrate empirically the main issues discussed so far. Namely, (i) that 

assigning all available household, family and child characteristics into a single category will 

likely lead to an overstatement of the importance of these influences vis-à-vis that of school 

inputs, especially when one lacks rich information on school characteristics; (ii) that the use 

of school fixed effects to account for the contribution of school inputs can lead to an 

overstatement of the importance of these influences, especially when one lacks information 

on early childhood inputs or lagged skill and schools are highly segregated; and (iii) that the 

alternative decomposition strategy proposed here is less prone to biases than those employed 

so far in the literature. 

 

For this, I will decompose the gap in cognitive skill observed between urban and rural 8-year-

old children in Peru. I will first build a “full information” decomposition relying on an 

unusually rich dataset that contains abundant information on school inputs and longitudinal 

information on cognitive achievement. This will be based on the components of the 

alternative decomposition strategy proposed in Table 4. The objective is to verify that the 

school inputs considered do have a significant contribution to the gap under analysis. I will 

then exclude school input information and run three additional decompositions. The first will 

be based on the components of the alternative decomposition strategy and will serve to 

determine whether predetermined direct influences and exogenous input determinants pick-

up the contribution of the omitted school inputs as predicted by the model described in 

section 3. The second will be based on the components under the standard decomposition rule 

and will be used to verify that this decomposition introduces a positive bias in the estimated 

contribution of family and household influences. The third will include school fixed effects to 

account for school inputs and will be compared against the “full information” decomposition 

to assess if the fixed effects estimation tends to overstate the importance of school inputs.  

 

5.1.  Data sources and variables 

 

This analysis will employ the data contained in the Peruvian dataset of the Young Lives 

Study17. In particular, I will consider the first three rounds of the “younger cohort” child and 

household surveys, as well as its school survey. The basic time-structure of this data can be 

summarized as follows. 

  

                                                           
17 Young Lives is an international study of childhood poverty, following 12,000 children in 4 countries 

(Ethiopia, India, Peru and Vietnam) over 15 years. 
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Table 5: Time-structure and sample sizes of the relevant YL databases 
 

 Child and household survey 
School Survey 

2011 
Round 1 

2002 

Round 2 

2006 

Round 3 

2009 

Younger cohort’s  

age (years) 

1  

(0.5-1.5) 

5  

(4.5-5.5) 

8  

(7.5-8.5) 

10  

(9.5-10.5) 

Sample size (children) 2,052 1,963 1,943 
572 

(132 schools) 

Educational attainment 

(normative) 
-- Preschool 2nd grade 5th grade 

Source: Young Lives Study (Peru). 

 

 

All the information was merged into a single dataset at the child level. For the analysis that 

follows I will consider two samples. The first considers all children that have cognitive test 

scores for rounds 2 and 3, and attend a school included in the school survey18 (487 children in 

124 schools). The second sample considers all children that have cognitive test scores for 

rounds 2 and 3 (1,561 children). 

 

Following the analytical framework described in section 3, period 1 variables will correspond 

to influences relevant from birth and up to age 5, and period 2 variables will correspond to 

influences relevant between ages 5 and 8. Accordingly, period 1 variables will be provided by 

rounds 1 and 2, while period 2 variables will be provided by round 3. Influences captured in 

the school survey (collected two years after round 3) will be assumed to be the same as those 

present in period 219. 

 

The measures of cognitive achievement employed in this analysis are the standardized test 

scores obtained in the Peabody Picture Vocabulary Test (PPVT). This is a widely used test of 

receptive vocabulary that has a strong positive correlation with several measures of 

intelligence (Cueto and Leon, 2012). The test has a Spanish version adapted for Latin 

America (Dunn et al., 1986) and is the only cognitive skill measure for which the younger 

cohort survey presents longitudinal results. The test was applied in rounds 2 and 3, when the 

younger cohort children were five and eight years of age, respectively. 

 

Rounds 1, 2 and 3 of the household and child survey contain rich information on household 

and caregiver characteristics. Information related to the child is also fairly comprehensive, 

including aspects related to her health care and health status, schooling history, and time use 

(round 3). Table 6 presents the variables from the child and household surveys considered as 

                                                           
18 The risk of selection bias due to this second condition is small. Primary school attendance in Peru is close to 

100% (only 0.7% of Young Lives children were not attending school in round 3). Schools participating in the 

school survey were randomly selected within the four strata considered by the authors of the study (urban-

private, urban-public, rural-public, rural-bilingual-public; see Guerrero et al. (2012)). Even so, I will also 

consider the full sample of children with complete information on cognitive skill in order to explore if results 

are affected by the fact of restricting the sample to those children whose school was included in the school 

survey. 
19 I am assuming that that school characteristics have not changed significantly during the two year period that 

separates round 3 from the school survey and that the child has remained in the same school since her enrolment 

in first grade (at age 6) until the moment in which the school survey was collected (at age 10). According to 

administrative data collected from the schools included in the survey, school switching is not significant. On 

average, only 2% of students enrolled in primary education changed school each year between 2009 and 2010. 
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early childhood and home inputs, health inputs, predetermined direct influences, and input 

determinants.  

 

The school survey contains a fairly large number of school characteristics that could 

potentially be considered within the school inputs category. In Guerrero et al. (2012), the 

researchers who designed and implemented the school survey distinguish between school-

quality and school-responsiveness variables when describing the “educational opportunities” 

offered to children at school. Within the school-quality group, variables that are potentially 

relevant for this analysis can be further classified into four categories: (i) size, organization 

and timetable (ORG); (ii) infrastructure (INF); (iii) climate (CLIM)20; (iv) learning activities 

and materials (ACT); and (v) teacher characteristics (TEA). School responsiveness is related 

to the degree with which schools respond to students’ needs and potential. Variables within 

this category (RESP) indicate whether or not the school provides support for students lagging 

behind or at risk of dropping out. School variables presented in Table 6 are the ones which 

resulted after applying a three-step procedure to narrow down the most significant predictors 

of cognitive skill within each of the six school input categories described above21. 

 

 

Table 6: Description of the variables used in the empirical specifications 

 

Variable type Variable used in empirical specifications Database 
Period 1 measured 

cognitive skill  (𝑇𝑖1) 

Standardized raw PPVT score 
Round 2 

Period 2 measured 

cognitive skill  (𝑇𝑖2) 

Standardized raw PPVT score(a) 
Round 3 

Early childhood 

educational inputs 

(𝐻𝐼𝑖1
𝑂 ) 

Real expenditure in child (learning materials and 

entertainment; x1,000 soles; 2006 prices in urban Lima) 
Round 2 

Mother had antenatal visits during pregnancy (yes = 1) Round 1 

Maternal response to child cry was affectionate (yes = 1)(b) Round 1 

Child attended formal preschool (yes = 1) Round 2 

Period 2 educational 

home inputs (𝐻𝐼𝑖2
𝑂 ) 

Real expenditure in child (learning materials and  

entertainment; x1,000 soles; 2006 prices in urban Lima) 
Round 3 

Household has books and child is encouraged to read (yes = 

1) 
Round 3 

Household has a computer (yes = 1) Round 3 

Child receives help from parents when doing homework  

(yes = 1) 
Round 3 

                                                           
20 Variables in this category include teachers’ perception of the relations among students and between students 

and teachers, and of the problems and difficulties encountered during the school year. 
21 It should be noted that this analysis does not aim at identifying the effect of a particular school input or to 

rank school inputs in terms of their importance for cognitive skill formation. I seek a reasonably comprehensive 

set of school and teacher characteristics to account for the contribution of school inputs, in general, to the 

cognitive achievement gap. The three-step procedure can be summarized as follows: (i) pairwise correlations 

between candidate variables within each category were evaluated, variables with correlation coefficients below 

0.6 were chosen and those with a correlation above 0.6 with two or more others were discarded; (ii) a regression 

of PPVT scores on the variables chosen after (i) was run for each category, and variables with a significant 

partial correlation were chosen; and (iii) a regression of PPVT scores on the variables chosen after (ii) was run, 

and those with a significant partial correlation were chosen. As a robustness check, I also performed a principal 

component analysis for each school quality category. The results reported in the next section are robust to using 

the first two principal components obtained from each of the six categories (which explain between 52% and 

80% of the variance). 
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Variable type Variable used in empirical specifications Database 
Hours in a typical day the child spends playing  Round 3 

Hours in a typical day the child spends sleeping Round 3 

Hours in a typical day the child spends studying Round 3 

Period 1 health input 

(ℎ𝑖1) 

Child is stunted (yes = 1)(c) 
Round 2 

Period 2 health input 

(ℎ𝑖2) 

Child is stunted (yes = 1)  
Round 3 

School inputs 

(𝑆𝐼𝑖2
𝑂 , 𝑆𝑌𝑖2) 

Years of schooling (basic education) Round 3 

Hours in a typical day the child spends at school(d) Round 3 

CLIM: absence of problems is class (score 12-48)(e) School 

survey 

INF: school has basic services (yes = 1)(f) School 

survey 

ACT: average curricular coverage in maths and language 

(average % of topics covered in depth) (e) 

School 

survey 

ORG: teacher absenteeism (%)(g) School 

survey 

ORG: school has a psychologist  (yes = 1)  School 

survey 

ORG: school is “multigrade” (yes = 1)(h) School 

survey 

TEA: more than 50% of teachers graduated from a university 

(yes = 1)(e) 

School 

survey 

Predetermined direct 

influences (𝑓𝑖) 

Child’s caregiver has higher education (yes = 1) Round 3 

Caregiver’s age Round 3 

Child is male (yes = 1) Round 3 

Child’s mother tongue is Spanish (yes = 1) Round 3 

Child’s age in months Round 3 

Exogenous input 

determinants (𝑧𝑖) 

Child lives in urban area (yes = 1) Round 3 

Average household total income (x10,000 soles; 2006 prices 

in urban Lima) 

Rounds 2 

and 3 

Average household size Rounds 1, 

2 and 3 

Proportion of male siblings Rounds 1, 

2 and 3 

Child birth order Rounds 1, 

2 and 3 

Caregiver aspiration for child’s educational attainment is 

university education (yes=1) 

Rounds 2 

and 3 
(a) Round 3 and round 2 raw PPVT scores were standardized using the round 2 mean and standard deviation. 

(b) Mother cuddled or soothed child when he/she cried. 

(c) A child is considered stunted if she exhibits a height for age z score below -2. 

(d) The effects of children’s time use categories are measured with respect to time spent working (the omitted 

time use category). 

(e) As reported by maths and language teachers in charge of classes attended by Young Lives children. 

(f) Basic services comprise water (from a public network or pipe), sanitation (public network connection or a 

treated cesspool), electricity and telephone connection. 

(g) Measured by observation, in maths and language classes attended by Young Lives children. 

(h) “Multigrade” means that children from different grades receive classes at the same time, in the same room, 

and by the same teacher. 
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Appendix 2 presents descriptive statistics as well as urban-rural differences for all the 

variables described above. Significant positive differences between urban and rural children 

are present in most of the direct influences and input determinants considered. This 

corroborates what has already been established by several studies about the Peruvian basic 

education system: there are high levels of enrolment but school quality remains very 

heterogeneous and unequally distributed between children of different socioeconomic 

backgrounds (Beltran and Seinfeld, 2012; Cueto et al., 2014)  leading to a highly segregated 

system.   

 

5.2. Decomposition results and discussion 

 

In this section I present and discuss the results obtained after estimating the contributions 

indicated in tables 3 and 4, considering the data described in Table 622. In particular, Table 7 

presents the estimated contributions of each component considering: (i) the alternative 

decomposition strategy and all the information provided by the school survey (“full 

information” decomposition in panel A); (ii) the alternative decomposition strategy excluding 

the inputs provided by the school survey and using the same sample as in (i) (panel B);  

(iii) the alternative decomposition strategy excluding the inputs provided by the school 

survey and using the complete sample of children (panel C)23; (iv) the standard 

decomposition rule excluding the inputs provided by the school survey and using the 

complete sample of children (panel D); and (v) the alternative decomposition strategy 

excluding the inputs provided by the school survey but using school fixed effects to account 

for the contribution of school inputs (Panel E). Notice that ignoring the information contained 

in the school survey implies that the only school inputs considered are years of schooling and 

time spent at school. 

 

Figure 1 shows the same point estimates accompanied by 95% confidence intervals. It also 

presents the statistic and corresponding p-value of the test of omitted inputs described in the 

previous section. Recall that this statistic provides an estimate of the contribution of 

exogenous input determinants to the gap under analysis. Appendix 3 presents coefficient 

estimates for the variables involved in all the specifications. 

 

The first set of results reveals that school inputs have a significant contribution of around 

35% to the cognitive skill gap observed at age 8 between urban and rural children. To 

account for this contribution I am reporting the estimate provided by the hybrid-value added 

specification. As mentioned above, several recent empirical studies have shown that this 

specification can provide reliable estimates of the effect of contemporaneous influences on 

skill, revealing that lagged test scores are a sufficient statistic for input assignment 

mechanisms that correlate with unobservables such as omitted past inputs and innate ability. 

Consistent with this, the hybrid-cumulative model, which can only control for omitted inputs 

but retains the full cumulate effect of unobserved innate ability, shows a somewhat larger 

estimated contribution for school inputs.  

 

                                                           
22 The hybrid-value added models were estimated including also the period 1 inputs available. This does not 

alter the interpretation of its coefficients and is a less restrictive specification as it relaxes the assumption 

requiring that the effects of period 1 inputs decay at a rate 𝜌. Consistent with the logic of a value added 

specification, the contributions of included period 1 inputs were assigned to the “past influences” category.  
23 Notice that exclusion of school input information contained in the school survey allows one to employ the 

complete sample of children that register a PPVT score in rounds 2 and 3. 
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Results reported in panel A of Figure 1 show that exogenous input determinants in the 

hybrid-cumulative specification have a significant contribution (22%; p < 0.05), indicating 

the presence of omitted inputs being controlled for through their demand equations. It is 

worth noticing that in the hybrid-value added model it is no longer possible to reject the null 

that input determinants are non-significant. Since in this model we are controlling for all 

period 1 inputs (both observed and omitted), this evidence is consistent with the absence of 

period 2 omitted inputs24. 

  

                                                           
24 Failure to reject the null (𝑧�̅� − 𝑧�̅�)′�̃� + �̃� = 0 does not directly imply the absence of omitted inputs. If 

predetermined direct influences are a sufficient statistic in the demand equation of omitted inputs, the null 

(𝑧�̅� − 𝑧�̅�)′�̃� = 0 will not be rejected even under the presence of omitted inputs. In this case, however, we 

cannot say that the lack of significance of exogenous input determinants in the hybrid-value added plus model is 

because predetermined direct influences are a sufficient statistic to characterize the demand equation of omitted 

inputs because these input determinants do have a significant contribution in the hybrid-cumulative model. 
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Table 7: Normalized contributions to the urban-rural gap in cognitive skill at age 8  

(% of urban-rural gap) 

 

Hybrid-cumulative Hybrid-value added 

(A) “Full information” decomposition: includes all inputs from the school survey 

Early childhood and home inputs 
0.129*** 

Period 2 home inputs 
0.030 

(0.049) (0.041) 

School inputs 
0.479*** 

School inputs 
0.348*** 

(0.086) (0.081) 

Health inputs 
0.063** 

Period 2 health inputs 
0.041 

(0.029) (0.029) 

-- 
-- 

Past influences 
0.368*** 

 (0.081) 

Predetermined direct influences 

and omitted inputs 

0.328*** Period 2 predetermined direct 

influences and period 2 

omitted inputs 

0.214** 

(0.089) (0.082) 

(B) Alternative decomposition strategy excluding inputs from the school survey (reduced sample) 

Early childhood and home inputs 
0.216*** 

Period 2 home inputs 
0.071* 

(0.061) (0.041) 

School inputs 
0.062*** 

School inputs 
0.045*** 

(0.016) (0.014) 

Health inputs 
0.077*** 

Period 2 health inputs 
0.044 

(0.029) (0.031) 

-- 
-- 

Past influences 
0.416*** 

 (0.098) 

Predetermined direct influences 

and omitted inputs 

0.645*** Period 2 predetermined direct 

influences and period 2 

omitted inputs 

0.424*** 

(0.075) (0.095) 

(C) Alternative decomposition strategy excluding inputs from the school survey (complete sample) 

Early childhood and home inputs 
0.200*** 

Period 2 home inputs 
0.082*** 

(0.024) (0.022) 

School inputs 
0.051*** 

School inputs 
0.027*** 

(0.009) (0.007) 

Health inputs 
0.060*** 

Period 2 health inputs 
0.025** 

(0.023) (0.012) 

-- 
-- 

Past influences 
0.419*** 

 (0.032) 

Predetermined direct influences 

and omitted inputs 

0.689*** Period 2 predetermined direct 

influences and period 2 

omitted inputs 

0.447*** 

(0.057) (0.055) 
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Hybrid-cumulative Hybrid-value added 

(D) Standard decomposition rule excluding inputs from the school survey  (complete sample) 

Family influences 
0.470*** 

Period 2 family influences 
0.302*** 

(0.046) (0.045) 

School inputs 
0.051*** 

School inputs 
0.027*** 

(0.009) (0.007) 

Health inputs 
0.060** 

Period 2 health inputs 
0.025** 

(0.023) (0.012) 

-- 
-- 

Past influences 
0.419*** 

 (0.032) 

Unexplained 
0.419*** 

Unexplained 
0.228*** 

(0.079) (0.077) 

(E) School fixed effects as school inputs (complete sample) 

Early childhood and home inputs 
0.117 

Period 2 home inputs 
0.030 

(0.110) (0.072) 

School inputs 
0.720*** 

School inputs 
0.524*** 

(0.106) (0.103) 

Health inputs 
0.068** 

Period 2 health inputs 
0.042 

(0.027) (0.033) 

-- 
-- 

Past influences 
0.388*** 

 (0.078) 

Predetermined direct influences 

and omitted inputs 

0.094 Period 2 predetermined direct 

influences and period 2 

omitted inputs 

0.016 

(0.116) (0.111) 

Robust standard errors in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 
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Figure 1: Normalized contributions to the urban-rural gap in cognitive skill at age 8 (point estimates and 95% confidence intervals) 

Hybrid - cumulative Hybrid – value added 

(A) “Full information” decomposition: includes all inputs from the school survey 

  
Ho: (𝑧�̅� − 𝑧�̅�)′𝜓 = 0; stat = 0.22, p-value = 0.031 Ho: (𝑧�̅� − 𝑧�̅�)′�̃� = 0; stat = 0.11, p-value = 0.266 

(B) Alternative decomposition strategy excluding inputs from the school survey (reduced sample) 

  
Ho: (𝑧�̅� − 𝑧�̅�)′𝜓 = 0; stat = 0.51, p-value = 0.000 Ho: (𝑧�̅� − 𝑧�̅�)′�̃� = 0; stat = 0.30, p-value = 0.008 
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Hybrid - cumulative Hybrid – value added 

(C) Alternative decomposition strategy excluding inputs from the school survey (complete sample) 

  
Ho: (𝑧�̅� − 𝑧�̅�)′𝜓 = 0; stat = 0.56, p-value = 0.000 Ho: (𝑧�̅� − 𝑧�̅�)′�̃� = 0; stat = 0.32, p-value = 0.000 

(D) Standard decomposition rule (complete sample) 
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Hybrid - cumulative Hybrid – value added 

(E) School fixed effects as school inputs (complete sample) 

  
Ho: (𝑧�̅� − 𝑧�̅�)′𝜓 = 0; stat = 0.002, p-value = 0.982 Ho: (𝑧�̅� − 𝑧�̅�)′�̃� = 0; stat = -0.049, p-value = 0.744 
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If the contribution of omitted inputs is captured by their demand equations when exogenous 

input determinants are included in the regression, omission of significant school inputs 

should increase the contribution of the “predetermined direct influences and omitted inputs” 

category. Results presented in Panel B of Table 7 and of Figure 1 for both specifications are 

consistent with this. In particular, the contribution of the category hosting omitted inputs in 

the hybrid-cumulative specification grows twice as large when school survey information is 

omitted (from 33% in the “full information” decomposition up to 65%). There is also strong 

evidence of the presence of omitted inputs as the contribution of exogenous input 

determinants in the hybrid cumulative model is now 51% (it was 22% in the “full 

information” decomposition) and highly significant (p < 0.00).  

 

There is also a significant increase in the contribution of the category hosting omitted inputs 

in the value added specification (from 21% in the “full information” decomposition up to 

42% after ignoring school inputs provided by the school survey). Importantly, the 

contribution of exogenous input determinants now remains significant (30%; p < 0.00) which 

implies we cannot accept the null (𝑧�̅� − 𝑧�̅�)′�̃� + �̃� = 0 (see Panel B in Figure 1).  This 

result, which differs from the one obtained with the complete set of data, confirms there are 

still relevant period 2 influences omitted. This is consistent with the fact that we are 

intentionally omitting school inputs. 

 

It is also worth mentioning that, consistent with the fact that exogenous input determinants 

and predetermined direct influences are controlling for the omitted school inputs, we only 

observe a small increase in the estimated contribution of the categories hosting home inputs. 

This increase, which could be regarded as a bias, remains within standard errors in both 

specifications (compare panels A and B in Figure 1). 

 

Results presented in Panel C of Table 7 and of Figure 1 reveal that the results just discussed 

are robust to considering the entire sample of children with complete PPVT scores and not 

just those attending schools included in the school survey. This should mitigate concerns 

regarding potential selection bias in the sample used for the preceding analysis. The use of a 

larger sample also adds precision to the results discussed in the previous paragraphs. 

 

The fact that the variables included in the “predetermined direct influences and omitted 

inputs” category are capturing the contribution of omitted school inputs implies that assigning 

these variables to a category that does not correspond to the school environment will generate 

a bias. This is precisely what happens under the standard decomposition rule. All family, 

household and child characteristics are assigned to a single category while the remaining 

urban-rural indicator is used to capture the “unexplained” part of the cognitive skill gap. The 

new category hosting “family influences” has a contribution between 20 and 25 percentage 

points larger than the one capturing early childhood and home inputs in the alternative 

decomposition strategy (compare panels C and D in Figure 1). We know at least part of this 

additional contribution is a bias because at least part of it belongs to the school environment 

through the school inputs we are intentionally omitting. 

 

It is worth noticing that there is also an important difference in the way one would interpret 

the portion of the gap that cannot be explained by the observed influences. To see this, let us 

refer to the decompositions based on the value added model in panels C and D of Figure 1.  

Under the standard decomposition rule and in absence of structure regarding the source of the 

“unexplained” part of the gap, one would conclude along the following lines: past 

achievement and the available family and school influences explain nearly 80% of the 
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cognitive skill gap and most of this contribution has to do with influences that belong to the 

home environment; the remaining 20% of the gap remains unexplained and that this could be 

due to the omission of relevant skill determinants or to the fact that urban and rural children 

transform inputs into test scores differently (i.e. they exhibit different returns for a given set 

of inputs).  

 

If we follow the alternative decomposition strategy, however, one would notice that a 

contribution similar to that of past influences (around 40%) can be attributed to period 2 

predetermined direct influences and omitted inputs. This estimate is not only closer to the 

contribution of the school inputs we are intentionally omitting (which is around 35%) but its 

interpretation is much more informative as it explicitly acknowledges the presence of omitted 

inputs that belong to the second period25. 

 

Finally, panel E in Table 7 and Figure 1 present decomposition results using school fixed 

effects instead of the inputs contained in the school survey. A comparison against the “full 

information” decomposition reveals a tendency to overstate the contribution of school inputs, 

especially in the absence of information on past achievement (i.e. in the hybrid-cumulative 

model). In fact, in the hybrid-cumulative model is quite clear the school fixed effects have 

absorbed missing inputs from the early childhood period leaving the “predetermined direct 

influences and omitted inputs” category with an insignificant contribution, as opposed to 

what happened in the “full information” decomposition.  

 

 

6. Concluding remarks 
 

Linear decompositions based on the Oaxaca-Blinder technique are a fairly common way of 

attempting an estimate of the contribution of two or more categories of variables to the 

difference in cognitive achievement between children of different socioeconomic 

backgrounds. Two prominent examples of these categories are family and school influences. 

 

In this paper, I have argued that performing such decompositions in absence of a framework 

postulating how cognitive skill is accumulated and how are its inputs determined, can be 

problematic in several ways. In particular, absence of this framework can lead one to 

overlook the difference between skill inputs and skill input determinants and to make 

arbitrary choices in terms of decomposition strategy and interpretation of its components. 

This, in turn, can lead to biases in the estimated contributions and to misleading policy 

implications. 

 

This analysis has reviewed several studies using data from developing countries and has 

found no consensus regarding the specific Oaxaca-Blinder strategy to use and how to 

interpret the “unexplained” part of the gap, as well as a tendency to group all observed 

family, household and child characteristics in a category different from the school 

environment. I argued the latter can lead to an overstatement of the importance of family and 

household influences because several of these characteristics can be controlling for omitted 

inputs that belong to the school environment. School fixed effects can also pick-up the 

contribution of omitted inputs that belong to the home environment, especially in highly 

                                                           
25 Notice that for the standard rule I have employed an OB pooled* decomposition. If we use an OB pooled 

decomposition (where reference coefficients are provided by a pooled regression that excludes the group 

indicator), we would obtain an even smaller estimate for the “unexplained” part of the gap (13%), which implies 

a larger risk of overstating the contribution of home influences. 
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segregated school systems. There are, therefore, reasons to doubt the significant school 

contributions found in those studies that have used this empirical strategy.    

 

Based on Glewwe and Miguel (2008), I developed a simple model explaining the skill 

formation process and how its inputs, including school characteristics, are determined by 

families’ choices. I then used these insights to illustrate, analytically, the potential biases that 

can be introduced by the rule of grouping all family, household and child characteristics into 

a single category. I also used the results of the model to justify the categories proposed for an 

alternative decomposition strategy that aims at being less susceptible to biases that those used 

so far in the literature.  

 

This alternative strategy uses the same coefficient estimates as one of the types of Oaxaca-

Blinder decomposition, but arranges the contribution of individual variables considering that 

predetermined family, household and child characteristics belong to the demand functions of 

inputs. These variables are therefore grouped in a special category hosting omitted inputs that 

resembles the “unexplained” part of the gap in a more conventional Oaxaca-Blinder 

decomposition. 

 

Finally, I illustrate empirically the main issues discussed in the paper by decomposing the 

gap in cognitive achievement between urban and rural 8-year-old children in Peru. I rely on 

an unusually rich dataset containing comprehensive information on school characteristics and 

longitudinal information on skill that allows one to control for early childhood inputs and 

innate ability. This provides a fairly reliable estimate of the contribution of school inputs.  

 

I then intentionally omitted information on school inputs and found that: (i) their contribution 

is picked-up by the predetermined family, household and child variables included, as 

predicted by the framework that understands these as arguments of their demand functions; 

(ii) assigning these exogenous input determinants into a single “family influences” category 

will lead to an overstatement of their contribution; (iii) the alternative decomposition strategy 

proposed here is less prone to this kind of bias and provides a more accurate interpretation of 

the “unexplained” part of the gap; and (iv) the use of school fixed effects leads to an 

overstatement of the contribution of school inputs, especially when information on early 

childhood influences is lacking. 

 

If one seeks to perform a linear decomposition of an achievement gap and be able to draw 

useful policy implications, this analysis suggests one needs to exercise caution it at least two 

ways. First, it is always advisable to determine which of the available variables better reflect 

an input of skill and which better reflect an input determinant (i.e. an argument in the demand 

function of the inputs of skill). Based on this, one can then assess which are the assumptions 

required for input determinants to control for omitted inputs that belong only to a certain 

category. For example, using predetermined family, household and child characteristics to 

control only for omitted home influences implies there are no omitted school inputs or that 

family decisions have not a significant role in determining the quality of the school 

environment. If these assumptions are not plausible considering the data in hand and the 

education system under analysis, one can rely on the decomposition strategy proposed here. 

 

Second, it is preferable to build variable categories focusing on skill inputs rather than on 

input determinants. This is because inputs, by definition, have a direct effect on skill. If the 

supply of inputs found to have a significant contribution to some form of inequality can be 

directly affected by policy action, then policy can have an immediate role in mitigating this 
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inequality. If we focus the analysis on input determinants we can end up obscuring the role of 

inputs than can be directly affected by policy and centring the attention of policymakers on 

family variables that have a less obvious relation with policy action, such as parental 

education or preferences. 
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Table 1: Studies that have attempted a linear decomposition of the observed cognitive achievement gap between two groups of children 

 

 

 

(A) 

Author(s), 

year and 

country 

(B) 

Outcome and 

groups 

(C) 

Empirical specification, 

decomposition strategy 

and components 

(D) 

Categories 

proposed 

observed 

influences 

(E) 

 

Observed influences and data sources 

(F) 

 

Results, remarks and policy implications 

1 

McEwan and 

Trowbridge 

(2007) 

 

Guatemala 

Test scores in 

language and 

maths. 

 

Indigenous vs. 

non-indigenous 

children in grades 

3 and 6 

Regressions on 

contemporaneous 

predictors. 

 

OB twofold; reference 

coefficients from pooled 

regression including group 

indicator (pooled*) 

 

Components: endowments 

("explained"), group 

indicator ("unexplained") 

C1: Family 

variables 

 

C2: Quality of 

schools 

C1: Parental education, presence of books, 

television viewing, child sex. 

 

C2: School fixed effects. 

 

PROENERE survey (2001). 

> Explained component (language-

mathematics) 

   Grade 3: 71%-77% 

   Grade 6: 55%-68% 

 

> Categories (language-mathematics) 

   Grade 3: C1= 6%-8%; C2 = 65%-69% 

   Grade 6: C1 = 5%-3%; C2 = 50%-66% 

 

Remarks: Between 50-69% of the gap is 

explained by the varying quality of schools 

that are attended by indigenous and non-

indigenous children. 

2 

McEwan 

(2004) 

 

Bolivia 

Chile 

Test scores in 

language and 

maths.  

 

Indigenous vs. 

non-indigenous 

children in grades 

3 and 6 (Bolivia) 

and 4 and 8 

(Chile) 

Regressions on 

contemporaneous 

predictors. 

 

OB twofold; reference 

coefficients from pooled 

regression including group 

indicator (pooled*) 

 

Components: endowments 

("explained"), group 

indicator ("unexplained") 

C1: Family 

variables 

 

C2: School 

variables 

 

C3: Classroom 

variables 

C1: Parental education, access to basic 

services (Bolivia), income (Chile), presence 

of books at home (Chile). 

 

C2: School fixed effects 

 

C3: Class fixed effects 

 

Bolivia: SIMECAL (1997) 

Chile: SIMCE (1997-1999) 

> Explained component 

   Between 80% and 90%  

 

> Categories 

   C1 between 20% and 40% 

   C2 and C3 between 50% and 70% 

 

Remarks: Between 50% and 70% of the gaps 

are attributable to differences in the quality of 

schools and classrooms. The gap may be the 

result of an unequal distribution of school and 

classroom resources, but also of an unequal 

distribution of peer-group characteristics. 
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(A) 

Author(s), 

year and 

country 

(B) 

Outcome and 

groups 

(C) 

Empirical specification, 

decomposition strategy 

and components 

(D) 

Categories 

proposed 

observed 

influences 

(E) 

 

Observed influences and data sources 

(F) 

 

Results, remarks and policy implications 

3 

Ramos et al. 

(2012) 

 

Colombia 

Test scores in 

mathematics, 

science, reading 

 

Urban vs. rural 

students 

Regressions on 

contemporaneous 

predictors. 

 

OB twofold; reference 

coefficients from rural 

group 

 

Components: endowments 

("explained"), coefficients 

("unexplained") 

C1: Individual 

characteristics 

 

C2: Family 

characteristics 

 

C3: School 

characteristics 

C1: Child's age, child's sex. 

 

C2: Parental education, second generation 

migrant, home language, presence of books 

at home. 

 

C3: Private/public, size, students per 

teacher, mean socioeconomic level of peer 

group ("peer effects"). 

 

PISA survey (2006 and 2009) 

> Explained component 

   100% of gap (unexplained component has 

negative contribution) 

 

> Categories 

   C3 between 75% and 83% (mostly explained 

by the mean socioeconomic level of peer 

group) 

 

Remarks: Most of the rural-urban school 

differential is related to family characteristics.  

 

Policy implications: measures aimed at 

improving the general educational situation 

and conditions in the family 

4 

Hernandez-

Zavala et al. 

(2006) 

 

Guatemala 

Mexico 

Peru 

Test scores in 

language and 

maths. 

 

Indigenous vs. 

non-indigenous 

children between 

ages 8-10 

Regressions on 

contemporaneous 

predictors. 

 

OB twofold; reference 

coefficients from non-

indigenous group. 

 

Components: endowments 

("explained"), coefficients 

("unexplained") 

C1: Family and 

child inputs 

 

C2: School inputs 

C1: Parental education, access to basic 

services (Mexico, Guatemala), household 

assets (Guatemala), books at home (Peru), 

child's sex, child's grade, child repeated a 

grade, child works, child attended preschool. 

 

C2: School is private/public; urban/rural 

(Peru, Guatemala), teacher experience, 

classroom condition (Peru and Mexico), 

access to textbooks (Guatemala), pupil-

teacher ratio (Peru, Guatemala) 

 

Peru: First Comparative International Study 

on Language, Mathematics and Associated 

Factors (1997). 

Guatemala: "Laboratorio Guatemala" 

(2002). 

Mexico: National Standards (2001). 

> Explained component (languange-

mathematics) 

   Guatemala: 41%-55% 

   Mexico: 75%-68% 

   Peru: 70%-66% 

 

> Categories (languange-mathematics) 

   Guatemala:  C1 = 23%-33%; C2 = 17%-

23%   

   Mexico: C1 = 67%-75%; C2 = 0%  

   Peru: C1= 38%-41%; C2 25%-32%  

 

Remarks: Family variables contribute more 

than school variables to the overall explained 

component. 

 

Policy implications: effective bilingual 

education, compensatory education programs, 

choice of school and increased autonomy. 
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(A) 

Author(s), 

year and 

country 

(B) 

Outcome and 

groups 

(C) 

Empirical specification, 

decomposition strategy 

and components 

(D) 

Categories 

proposed 

observed 

influences 

(E) 

 

Observed influences and data sources 

(F) 

 

Results, remarks and policy implications 

5 

Arteaga and 

Glewwe 

(2014) 

 

Peru 

Test scores in 

PPVT and maths. 

 

Indigenous vs. 

non-indigenous 

children at ages 8 

and 5 

Regressions on past and 

contemporaneous 

predictors. Separate 

models for children at 8 

and 5 years of age. 

 

OB threefold; reference 

group is the indigenous 

group. 

 

Components: endowments, 

coefficients 

("heterogeneous effects"), 

interaction. 

C1: Household and 

child 

characteristics 

 

C2: Community 

characteristics 

C1: Household expenditure, parental 

education, school expenditure, months in 

day care, months breastfeeding, prenatal 

visits, child did homework with parents, 

child played with parents, child's age, child's 

sex, child's nutritional status. 

 

C2: Community fixed effects. 

 

Young Lives Study, rounds 2 (2006) and 3 

(2009). 

Most significant contributors: 

> By 5 years of age; PPVT  

   Endowments of C2 = 67% 

> By 8 years of age; PPVT and maths  

   Endowments of C1 > 80% (especially in 

parental education). 

* The contribution of interaction terms is not 

reported. 

 

Remarks: By age 8 the importance of 

community characteristics recedes and 

household and child characteristics play the 

major role. 

 

Policy implication: Increase indigenous 

children's years of education as they will be 

household heads in the future. 

6 

Barrera-

Osorio et al. 

(2011) 

 

Indonesia 

Test scores in 

mathematics 

 

2006 vs. 2003 

results 

Regressions on 

contemporaneous 

predictors. 

 

OB twofold; (a) reference 

coefficients from 2006 

group; (b) reference 

coefficients from pooled 

regression including group 

indicator. 

 

Components: (a) 

endowments ("explained"), 

coefficients 

("unexplained"); (b) 

endowments ("explained"), 

group indicator 

("unexplained"). 

C1: Institutions / 

schools 

 

C2: Student 

characteristics 

 

C3: Family 

background 

C1: School determines pedagogy, adequate 

supply of teachers, private-public, urban-

rural, % repeating grade. 

 

C2: grade, child's age, child's sex. 

 

C3: Parental education, books present at 

home, access to computer, mother tongue. 

 

PISA survey (2003 and 2006) 

> Unexplained component  

   Between 63% and 92% 

 

> Categories 

   Most of the change in returns was in C2 

 

Remarks: Most of the test score increase 

between 2003 and 2006 was due to changes in 

the returns to the characteristics rather than 

due to changes in the characteristics 

themselves. 
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(A) 

Author(s), 

year and 

country 

(B) 

Outcome and 

groups 

(C) 

Empirical specification, 

decomposition strategy 

and components 

(D) 

Categories 

proposed 

observed 

influences 

(E) 

 

Observed influences and data sources 

(F) 

 

Results, remarks and policy implications 

7 

Zhang and 

Lee (2011) 

 

Korea 

Japan 

OECD 

countries 

Test scores in 

mathematics, 

science, reading  

 

Specific OECD 

countries vs. 

OECD average 

Regressions on 

contemporaneous 

predictors. 

 

Resembles OB twofold; 

gaps are measured against 

OECD average using 

predictor means and 

coefficients from a 

regression containing all 

OECD countries. 

 

Components: endowments 

("explained"), coefficients 

("unexplained"). 

C1: Individual 

characteristics 

 

C2: Study time and 

activities 

 

C3: Family 

background 

 

C4: School 

characteristics 

C1: Grade, age, sex, immigrant, speaks 

foreign language, occupational aspiration. 

 

C2: time spent at school, homework is 

assigned. 

 

C3: parental education, parental 

occupational status, wealth, books present at 

home. 

 

C4: % of girls, % repeating grade, class size, 

student-teacher ratio, teacher qualifications, 

access to computers/internet, shortage of 

teachers by subject. 

 

PISA survey (2006) 

> Explained component  

   Varies considerably across countries; e.g. in 

maths: 0% (Germany), 51% (Korea), 100% 

(Japan) 

 

> Categories (specific results reported for 

Korea and Japan) 

   Korea: explained component attributable to 

differences in C4 (63%-83%) 

   Japan: explained component attributable to 

differences in C2 and C4 (> 85%) 

 

Remarks: Analysis on Korea and Japan 

illustrates how to identify factors that 

contribute most to the gap. If the observed gap 

is mainly due to the "unexplained" component, 

public policy needs to focus on broader and 

underlying economic, social and cultural 

differences. 

8 

Burger 

(2011) 

 

Zambia 

Test scores in 

reading 

 

Urban vs. rural 

schools 

Regressions on 

contemporaneous 

predictors. 

 

OB twofold; reference 

coefficients from rural 

schools. 

 

Components: endowments 

("explained"), coefficients 

("unexplained"). 

None 

Predictors: household asset index, parental 

education, pupil-teacher ratio, proportion of 

students who spoke English 

 

Southern Africa Consortium for Monitoring 

Educational Quality (SACMEQ II) 

> Endowments ("resources"): 55% 

> Coefficients ("returns to resources"): 45% 

  

Policy implication: Resource investment will 

not have the required impact unless the 

efficiency gap is also addressed. 
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(A) 

Author(s), 

year and 

country 

(B) 

Outcome and 

groups 

(C) 

Empirical specification, 

decomposition strategy 

and components 

(D) 

Categories 

proposed 

observed 

influences 

(E) 

 

Observed influences and data sources 

(F) 

 

Results, remarks and policy implications 

9 

Beltran and 

Seinfeld 

(2012) 

 

Peru 

Test scores in 

reading and maths  

 

 

Urban vs. rural 

students  

Regressions on 

contemporaneous 

predictors. 

 

OB threefold; rural 

students as reference 

group. 

 

Components: endowments, 

returns, interaction. 

None 

Predictors: preschool attendance, district 

classified as poor, parental education, 

mother tongue, teacher qualifications, school 

infrastructure, access to internet at school, % 

repeating grade at school, private-public 

school, class time (minutes) 

 

National Student Evaluation (2010) and 

School Census (2010) 

> Endowments: 36% (reading); 22% (maths) 

> Coefficients/returns: 14.4% (reading); 4.8% 

(maths) 

> Interaction: 49.6% (reading); 73.2% (maths) 

 

Policy implication: Adequate provision of 

resources has to be complemented with quality 

assurance and effective use. 
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Appendix 1: From the cumulative to the value added specification with age-dependent 

parameters 

 

Consider the following linear version of the skill formation technology with age-dependent 

parameters.  

 

𝐴𝑖2 = 𝐻𝐼𝑖2
′ 𝛾1

2 + 𝐻𝐼𝑖1
′ 𝛾2

2 + 𝑆𝐼𝑖2𝜙1
2 + ℎ𝑖2𝜑1

2 + ℎ𝑖1𝜑2
2 + 𝑓𝑖

′𝜆(2) + 𝜇𝑖0𝛽(2)   (i) 

 

Superscript 2 in all the parameters in (i) implies they are specific to period 2. This implies 

that the effect of a certain input on skill not only depends on the time elapsed since the 

application of the input but also on the specific period (or age) in which it was applied. Based 

on this, period 1 skill can be expressed as: 

 

𝐴𝑖1 =  𝐻𝐼𝑖1
′ 𝛾1

1 + ℎ𝑖1𝜑1
1 + 𝑓𝑖

′𝜆1 + 𝜇𝑖0𝛽1    (ii) 

 

We can subtract 𝜌𝐴𝑖1 from (i) to obtain: 

 

𝐴𝑖2 − 𝜌𝐴𝑖1 = 𝐻𝐼𝑖2
′ 𝛾1

2 + 𝐻𝐼𝑖1
′ (𝛾2

2 − 𝜌𝛾1
1) + 𝑆𝐼𝑖2𝜙1

2 + ℎ𝑖2𝜑1
2 + ℎ𝑖1(𝜑2

2 − 𝜌𝜑1
1)

+ 𝑓𝑖
′(𝜆(2) − 𝜌𝜆1) + 𝜇𝑖0(𝛽(2) − 𝜌𝛽1) 

(iii) 

 

If the effects of inputs decay at a rate 𝜌, the effects of period 1 inputs on period 2 skill equal 

𝜌 times the effect of period 1 inputs on period 1 skill. This means: 𝛾2
2 = 𝜌𝛾1

1, 𝜑2
2 = 𝜌𝜑1

1, 

𝜆(2) = 𝜆2 + 𝜌𝜆1 and 𝛽(2) = 𝛽2 + 𝜌𝛽1. This, in turn, implies (iii) can be written as: 

 
𝐴𝑖2 = 𝜌𝐴𝑖1 + 𝐻𝐼𝑖2

′ 𝛾1
2 + 𝑆𝐼𝑖2𝜙1

2 + ℎ𝑖2𝜑1
2 + 𝑓𝑖

′𝜆2 + 𝜇𝑖0𝛽2 

 

The main text presents the case for age-invariant parameters with essentially the same results 

(see equations (18), (19) and (20)). The only difference if that parameters accompanying 

home, school and health inputs, as well as predetermined direct influences and innate ability, 

are no longer age or period-specific. 
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Appendix 2: Descriptive statistics and urban-rural gaps 

 Mean SD Urban Rural Diff. 

Standardized raw PPVT score 

(round 3) 

1.780 0.951 2.095 1.028 1.067*** 

        (0.14) 

Standardized raw PPVT score 

(round 2)  

0.024 0.968 0.355 -0.766 1.121*** 

        (0.13) 

Real expenditure in child 

(learning materials and 

entertainment; round 2) (a) 

0.274 0.364 0.342 0.112 0.23*** 

    (0.049) 

Mother had antenatal visits during 

pregnancy (yes = 1) 

0.828 0.378 0.848 0.778 0.071* 

    (0.038) 

Maternal response to child cry 

was affectionate (yes = 1) 

0.230 0.421 0.286 0.097 0.188*** 

    (0.05) 

Child attended formal preschool 

(yes = 1) 

0.766 0.424 0.892 0.465 0.427*** 

    (0.055) 

Household has books and child is 

encouraged to read (yes = 1)  

0.450 0.498 0.478 0.382 0.096 

        (0.06) 

Household has a computer  

(yes = 1)  

0.140 0.347 0.195 0.007 0.188*** 

        (0.039) 

Real expenditure in child 

(learning materials and 

entertainment; round 3) (a) 

0.432 0.572 0.517 0.230 0.287*** 

        (0.063) 

Child receives help from parents 

when doing homework (yes = 1) 

0.665 0.472 0.758 0.444 0.314*** 

        (0.029) 

Hours in a typical day the child 

spends playing 

4.346 1.517 4.488 4.005 0.483** 

        (0.218) 

Hours in a typical day the child 

spends sleeping 

9.931 0.978 9.988 9.796 0.192 

        (0.114) 

Hours in a typical day the child 

spends studying 

1.945 0.834 2.120 1.526 0.594*** 

        (0.078) 

Child is stunted (yes = 1; round 2) 
0.316 0.465 0.207 0.576 -0.369*** 

    (0.034) 

Child is stunted (yes = 1; round 3) 
0.189 0.392 0.120 0.354 -0.235*** 

    (0.041) 

Hours in a typical day the child 

spends at school 

6.171 0.720 6.131 6.269 -0.138 

        (0.108) 

Years of schooling (basic 

education) 

2.374 0.544 2.429 2.243 0.186** 

        (0.085) 

CLIM: absence of problems is 

class (score 12-48) 

32.736 6.567 33.760 30.298 3.462** 

        (1.317) 

INF: school has basic services 

(yes = 1) 

0.556 0.497 0.761 0.069 0.691*** 

        (0.087) 
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 Mean SD Urban Rural Diff. 

ACT: average curricular coverage 

(% of topics covered in depth) 

0.531 0.153 0.564 0.452 0.111*** 

        (0.034) 

ORG: teacher absenteeism (%) 
0.025 0.111 0.012 0.057 -0.045 

        (0.031) 

ORG: school has a psychologist  

(yes = 1) 

0.179 0.383 0.248 0.014 0.234* 

        (0.109) 

ORG: school is “multigrade”  

(yes = 1) 

0.187 0.390 0.073 0.458 -0.385*** 

        (0.084) 

TEA: more than 50% of teachers 

graduated from a university  

(yes = 1) 

0.456 0.499 0.551 0.229 0.322*** 

        (0.091) 

Child’s caregiver has higher 

education (yes = 1) 

0.179 0.383 0.245 0.021 0.224*** 

    (0.037) 

Caregiver’s age 
34.569 6.843 34.172 35.514 -1.342 

    (0.804) 

Child is male (yes = 1) 
0.478 0.500 0.490 0.451 0.038 

    (0.048) 

Child’s mother tongue is Spanish 

(yes = 1) 

0.893 0.309 0.985 0.674 0.312** 

    (0.104) 

Child’s age in months 
96.510 3.708 96.500 96.537 -0.037 

    (0.507) 

Child lives in urban area  

(yes = 1) 

0.704 0.457 1.000 0.000 1.000 

         

Average household total income(a) 
1.512 1.116 1.711 1.037 0.674*** 

        (0.111) 

Average household size 
5.538 1.849 5.270 6.176 -0.906** 

        (0.306) 

Proportion of male siblings 
0.495 0.333 0.490 0.506 -0.016 

        (0.026) 

Child birth order 
2.475 1.584 2.194 3.144 -0.949*** 

        (0.198) 

Caregiver aspiration for child is 

university education (yes=1) 

0.655 0.476 0.743 0.444 0.299*** 

        (0.065) 

The number of observations is 487 for all variables. 

(a) x 1,000 soles; 2006 prices in urban Lima. 

Robust standard errors in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix 3: Coefficient estimates for the eight specifications involved 

 “Full information” estimations Excluding school inputs 

(reduced sample) 

VARIABLES Hybrid-CU Hybrid-VA Hybrid-CU Hybrid-VA 

     

Real expenditure in child (learning 

materials and entertainment; round 2) 

0.076 -0.022 0.180 0.038 

(0.090) (0.083) (0.106) (0.087) 

Mother had antenatal visits during 

pregnancy (yes = 1) 

0.132** 0.121** 0.136** 0.119** 

(0.051) (0.052) (0.050) (0.053) 

Maternal response to child cry was 

affectionate (yes = 1) 

0.077 0.025 0.101 0.035 

(0.063) (0.070) (0.062) (0.065) 

Child attended formal preschool  

(yes = 1) 

0.049 0.003 0.050 0.009 

(0.094) (0.080) (0.121) (0.113) 

Household has books and child is 

encouraged to read (yes = 1)  

0.210*** 0.235*** 0.207*** 0.240*** 

(0.057) (0.068) (0.052) (0.062) 

Household has a computer  

(yes = 1)  

0.087 0.064 0.133* 0.099 

(0.059) (0.055) (0.075) (0.072) 

Real expenditure in child (learning 

materials and entertainment; round 3)  

0.062 0.036 0.077 0.041 

(0.062) (0.064) (0.058) (0.064) 

Child receives help from parents when 

doing homework (yes = 1) 

0.007 -0.041 0.027 -0.023 

(0.093) (0.091) (0.085) (0.085) 

Hours in a typical day the child spends 

playing 

-0.003 -0.012 0.032* 0.015 

(0.021) (0.026) (0.017) (0.022) 

Hours in a typical day the child spends 

sleeping 

-0.032 -0.044 -0.011 -0.028 

(0.036) (0.038) (0.032) (0.035) 

Hours in a typical day the child spends 

studying 

0.045 0.024 0.085* 0.047 

(0.045) (0.041) (0.046) (0.046) 

Child is stunted (yes = 1; round 2) 
-0.048 -0.002 -0.079 -0.025 

(0.085) (0.084) (0.101) (0.094) 

Child is stunted (yes = 1; round 3) 
-0.212 -0.184 -0.226 -0.198 

(0.123) (0.133) (0.134) (0.143) 

Hours in a typical day the child spends 

at school 

-0.075 -0.070 -0.042 -0.043 

(0.051) (0.053) (0.056) (0.054) 

Years of schooling (basic education) 
0.342*** 0.253*** 0.326*** 0.227*** 

(0.081) (0.075) (0.077) (0.060) 

CLIM: absence of problems is class 

(score 12-48) 

0.009** 0.011** -- -- 

(0.004) (0.004)   

INF: school has basic services  

(yes = 1) 

0.183** 0.044 -- -- 

(0.069) (0.064)   

ACT: average curricular coverage (% 

of topics covered in depth) 

0.521 0.388 -- -- 

(0.308) (0.267)   

ORG: teacher absenteeism (%) 
-0.780* -0.761** -- -- 

(0.380) (0.317)   

ORG: school has a psychologist   

(yes = 1) 

0.194** 0.203** -- -- 

(0.079) (0.087)   

ORG: school is “multigrade” (yes = 1) 
-0.292** -0.308*** -- -- 

(0.120) (0.098)   

TEA: more than 50% of teachers 

graduated from university (yes = 1) 

0.090* 0.012 -- -- 

(0.049) (0.046)   

Child’s caregiver has higher education 

(yes = 1) 

0.135* 0.017 0.169** 0.025 

(0.066) (0.056) (0.075) (0.058) 

Caregiver’s age 
0.013** 0.008 0.012** 0.007 

(0.005) (0.005) (0.005) (0.005) 
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 “Full information” estimations Excluding school inputs 

(reduced sample) 

VARIABLES Hybrid-CU Hybrid-VA Hybrid-CU Hybrid-VA 

Child is male (yes = 1) 
0.028 0.034 0.056 0.062 

(0.096) (0.083) (0.094) (0.078) 

Child’s mother tongue is Spanish  

(yes = 1) 

0.341** 0.389** 0.390** 0.439** 

(0.144) (0.152) (0.145) (0.170) 

Child’s age in months 
0.014 0.004 0.018 0.007 

(0.011) (0.009) (0.011) (0.010) 

Child lives in urban area  

(yes = 1) 

0.120 0.028 0.395*** 0.202** 

(0.113) (0.096) (0.076) (0.091) 

Average household total income  
0.018 0.010 0.033 0.021 

(0.024) (0.021) (0.032) (0.027) 

Average household size 
0.013 0.013 0.006 0.006 

(0.026) (0.026) (0.028) (0.028) 

Proportion of male siblings 
-0.032 -0.100 -0.137 -0.202 

(0.175) (0.173) (0.146) (0.138) 

Child birth order 
-0.097*** -0.085** -0.101*** -0.088*** 

(0.026) (0.031) (0.025) (0.029) 

Caregiver aspiration for child is 

university education (yes = 1) 

0.058 0.026 0.112 0.065 

(0.054) (0.059) (0.072) (0.070) 

Standardized raw PPVT score  

(round 2)  

 0.341***  0.363*** 

 (0.052)  (0.046) 

Constant 
-1.362 0.465 -1.894 0.102 

(1.176) (1.117) (1.152) (1.172) 

     

Observations 487 487 487 487 

R-squared 0.557 0.608 0.510 0.573 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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 Excluding school inputs 

(complete sample) 

School fixed effects 

 (reduced sample) 

VARIABLES Hybrid-CU Hybrid-VA Hybrid-CU Hybrid-VA 

     

Real expenditure in child (learning 

materials and entertainment; round 2) 

0.122*** 0.034 -0.022 -0.103 

(0.036) (0.028) (0.099) (0.096) 

Mother had antenatal visits during 

pregnancy (yes = 1) 

0.193*** 0.139*** 0.212*** 0.205** 

(0.044) (0.039) (0.062) (0.071) 

Maternal response to child cry was 

affectionate (yes = 1) 

0.042 0.012 0.038 0.012 

(0.043) (0.046) (0.062) (0.056) 

Child attended formal preschool  

(yes = 1) 

0.059 0.016 0.070 0.043 

(0.058) (0.044) (0.169) (0.147) 

Household has books and child is 

encouraged to read (yes = 1)  

0.183*** 0.194*** 0.283** 0.272** 

(0.048) (0.048) (0.105) (0.110) 

Household has a computer  

(yes = 1)  

0.130*** 0.082** 0.074 0.061 

(0.040) (0.034) (0.090) (0.083) 

Real expenditure in child (learning 

materials and entertainment; round 3)  

0.059 0.029 0.145 0.098 

(0.044) (0.032) (0.098) (0.108) 

Child receives help from parents when 

doing homework (yes = 1) 

0.076 0.061 0.020 -0.023 

(0.045) (0.044) (0.149) (0.136) 

Hours in a typical day the child spends 

playing 

0.037* 0.021 -0.037 -0.051 

(0.021) (0.018) (0.032) (0.031) 

Hours in a typical day the child spends 

sleeping 

-0.019 -0.036 -0.038 -0.054 

(0.024) (0.024) (0.032) (0.038) 

Hours in a typical day the child spends 

studying 

0.065*** 0.017 0.025 0.015 

(0.022) (0.018) (0.069) (0.063) 

Child is stunted (yes = 1; round 2) 
-0.098 -0.024 -0.054 -0.022 

(0.066) (0.050) (0.089) (0.097) 

Child is stunted (yes = 1; round 3) 
-0.125** -0.111** -0.227* -0.190 

(0.052) (0.053) (0.122) (0.152) 

Hours in a typical day the child spends 

at school 

0.020 0.005 -0.048 -0.057 

(0.037) (0.034) (0.060) (0.058) 

Years of schooling (basic education) 
0.254*** 0.134*** 0.309** 0.286** 

(0.044) (0.034) -0.022 -0.103 

CLIM: absence of problems is class 

(score 12-48) 

-- -- -- -- 

    

INF: school has basic services  

(yes = 1) 

-- -- -- -- 

    

ACT: average curricular coverage (% 

of topics covered in depth) 

-- -- -- -- 

    

ORG: teacher absenteeism (%) 
-- -- -- -- 

    

ORG: school has a psychologist   

(yes = 1) 

-- -- -- -- 

    

ORG: school is “multigrade” (yes = 1) 
-- -- -- -- 

    

TEA: more than 50% of teachers 

graduated from university (yes = 1) 

-- -- -- -- 

    

Child’s caregiver has higher education 

(yes = 1) 

0.194*** 0.054 0.071 -0.059 

(0.058) (0.048) (0.101) (0.088) 

Caregiver’s age 
0.009** 0.006 0.018* 0.014 

(0.004) (0.004) (0.010) (0.010) 

Child is male (yes = 1) 
0.068 0.060 0.021 0.056 

(0.059) (0.038) (0.114) (0.102) 
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 Excluding school inputs 

(complete sample) 

School fixed effects 

 (reduced sample) 

VARIABLES Hybrid-CU Hybrid-VA Hybrid-CU Hybrid-VA 

Child’s mother tongue is Spanish  

(yes = 1) 

0.278** 0.367*** 0.343 0.316 

(0.105) (0.100) (0.264) (0.268) 

Child’s age in months 
0.012 0.008 0.016 -0.002 

(0.007) (0.006) (0.009) (0.009) 

Child lives in urban area  

(yes = 1) 

0.453*** 0.246*** -0.101 -0.131 

(0.085) (0.083) (0.152) (0.150) 

Average household total income  
0.048** 0.027* 0.001 -0.000 

(0.018) (0.014) (0.040) (0.032) 

Average household size 
0.009 0.008 0.039 0.042 

(0.014) (0.013) (0.040) (0.042) 

Proportion of male siblings 
-0.012 -0.029 -0.149 -0.218 

(0.069) (0.052) (0.219) (0.225) 

Child birth order 
-0.076*** -0.051** -0.105** -0.097* 

(0.020) (0.021) (0.042) (0.048) 

Caregiver aspiration for child is 

university education (yes = 1) 

0.216*** 0.147*** 0.122 0.073 

(0.034) (0.033) (0.081) (0.083) 

Standardized raw PPVT score  

(round 2)  

 0.399***  0.352*** 

 (0.030)  (0.064) 

Constant 
-1.667* -0.249 -0.614 1.851* 

(0.807) (0.813) (0.697) (0.895) 

     

School fixed effects No No Yes Yes 

Observations 1,561 1,561 487 487 

R-squared 0.473 0.557 0.698 0.730 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 


